3,074 research outputs found

    Cognition and the Web

    No full text
    Empirical research related to the Web has typically focused on its impact to social relationships and wider society; however, the cognitive impact of the Web is also an increasing focus of scientific interest and research attention. In this paper, I attempt to provide an overview of what I see as the important issues in the debate regarding the relationship between human cognition and the Web. I argue that the Web is potentially poised to transform our cognitive and epistemic profiles, but that in order to understand the nature of this influence we need to countenance a position that factors in the available scientific evidence, the changing nature of our interaction with the Web, and the possibility that many of our everyday cognitive achievements rely on complex webs of social and technological scaffolding. I review the literature relating to the cognitive effects of current Web technology, and I attempt to anticipate the cognitive impact of next-generation technologies, such as Web-based augmented reality systems and the transition to data-centric modes of information representation. I suggest that additional work is required to more fully understand the cognitive impact of both current and future Web technologies, and I identify some of the issues for future scientific work in this area. Given that recent scientific effort around the Web has coalesced into a new scientific discipline, namely that of Web Science, I suggest that many of the issues related to cognition and the Web could form part of the emerging Web Science research agenda

    Heuristic Evaluation for Serious Immersive Games and M-instruction

    Get PDF
    © Springer International Publishing Switzerland 2016. Two fast growing areas for technology-enhanced learning are serious games and mobile instruction (M-instruction or M-Learning). Serious games are ones that are meant to be more than just entertainment. They have a serious use to educate or promote other types of activity. Immersive Games frequently involve many players interacting in a shared rich and complex-perhaps web-based-mixed reality world, where their circumstances will be multi and varied. Their reality may be augmented and often self-composed, as in a user-defined avatar in a virtual world. M-instruction and M-Learning is learning on the move; much of modern computer use is via smart devices, pads, and laptops. People use these devices all over the place and thus it is a natural extension to want to use these devices where they are to learn. This presents a problem if we wish to evaluate the effectiveness of the pedagogic media they are using. We have no way of knowing their situation, circumstance, education background and motivation, or potentially of the customisation of the final software they are using. Getting to the end user itself may also be problematic; these are learning environments that people will dip into at opportune moments. If access to the end user is hard because of location and user self-personalisation, then one solution is to look at the software before it goes out. Heuristic Evaluation allows us to get User Interface (UI) and User Experience (UX) experts to reflect on the software before it is deployed. The effective use of heuristic evaluation with pedagogical software [1] is extended here, with existing Heuristics Evaluation Methods that make the technique applicable to Serious Immersive Games and mobile instruction (M-instruction). We also consider how existing Heuristic Methods may be adopted. The result represents a new way of making this methodology applicable to this new developing area of learning technology

    Semantic web and augmented reality for searching people, events and points of interest within of a university campus

    Get PDF
    The advance of technology makes that mobile devices have gained widespread popularity. Modern mobile devices include build in sensors, cameras, compasses, and enhanced storage and processing capabilities, which allow developers to use those features to create applications with new or enhanced functionality. In this context we present a mobile application for searching places, people an events within a university campus. In our work we leverage semantic web and augmented reality to provide an application with a high degree of query expressiveness and an enhanced user experience. In addition, we validate our approach with a use case example that shows the complete searching process.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Semantic web and augmented reality for searching people, events and points of interest within of a university campus

    Get PDF
    The advance of technology makes that mobile devices have gained widespread popularity. Modern mobile devices include build in sensors, cameras, compasses, and enhanced storage and processing capabilities, which allow developers to use those features to create applications with new or enhanced functionality. In this context we present a mobile application for searching places, people an events within a university campus. In our work we leverage semantic web and augmented reality to provide an application with a high degree of query expressiveness and an enhanced user experience. In addition, we validate our approach with a use case example that shows the complete searching process.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    Problems In Indoor Mapping and Modelling

    Get PDF

    VIRTUAL ACCESS TO HERITAGE THROUGH SCIENTIFIC DRAWING, SEMANTIC MODELS AND VR-EXPERIENCE OF THE STRONGHOLD OF ARQUATA DEL TRONTO AFTER THE EARTHQUAKE

    Get PDF
    Interactive representation has proven to be an effective tool in various disciplines related to Digital Cultural Heritage (DCH). This study proposes a research method that uses interactive representation to share complex scenarios like the Stronghold of Arquata del Tronto, facilitating novel forms of heritage dissemination. The scan-to-BIM process made it possible to digitise complex structural elements damaged by the 2016 earthquake. The investigation of the complexity paradigm improved the reliability of the semantic model that supports the preservation process. Interoperability and accessibility paradigms were explored to create a more comprehensive and accurate understanding of the built heritage. A web-VR platform was developed to enhance user interaction and simplify virtual environment exploration without using complex hardware (VR headset and controllers), making it possible to experience VR in the browser

    Personalization in cultural heritage: the road travelled and the one ahead

    Get PDF
    Over the last 20 years, cultural heritage has been a favored domain for personalization research. For years, researchers have experimented with the cutting edge technology of the day; now, with the convergence of internet and wireless technology, and the increasing adoption of the Web as a platform for the publication of information, the visitor is able to exploit cultural heritage material before, during and after the visit, having different goals and requirements in each phase. However, cultural heritage sites have a huge amount of information to present, which must be filtered and personalized in order to enable the individual user to easily access it. Personalization of cultural heritage information requires a system that is able to model the user (e.g., interest, knowledge and other personal characteristics), as well as contextual aspects, select the most appropriate content, and deliver it in the most suitable way. It should be noted that achieving this result is extremely challenging in the case of first-time users, such as tourists who visit a cultural heritage site for the first time (and maybe the only time in their life). In addition, as tourism is a social activity, adapting to the individual is not enough because groups and communities have to be modeled and supported as well, taking into account their mutual interests, previous mutual experience, and requirements. How to model and represent the user(s) and the context of the visit and how to reason with regard to the information that is available are the challenges faced by researchers in personalization of cultural heritage. Notwithstanding the effort invested so far, a definite solution is far from being reached, mainly because new technology and new aspects of personalization are constantly being introduced. This article surveys the research in this area. Starting from the earlier systems, which presented cultural heritage information in kiosks, it summarizes the evolution of personalization techniques in museum web sites, virtual collections and mobile guides, until recent extension of cultural heritage toward the semantic and social web. The paper concludes with current challenges and points out areas where future research is needed

    Supporting organisational learning: an overview of the ENRICH approach

    Get PDF
    Traditional training separates learning from the work context in which the newly acquired knowledge is to be applied. This requires the worker themselves to apply imparted theoretical knowledge to knowledge in practice, a process that is grossly inefficient. The ENRICH approach builds on organisational learning theory to intertwine working and learning. The ENRICH methodology incorporates theories of learning at the individual, group and organisational level. Individual level learning is supported through the provision of semantically related resources to support problem reframing and to challenge assumptions. Group learning is supported through the evolution of domain concepts through work documents and representations linked to formal models of group knowledge, and the development of group practices and perspectives through enhanced sharing and collaboration. Organisational learning is supported through exposure to customs and conventions of other groups through shared best practices and knowledge models. The approach is being investigated in a range of industrial settings and applications
    • …
    corecore