5,246 research outputs found

    Contextual Permission: A Solution to the Free Choice Paradox

    Get PDF
    In this paper, we give a solution to the Free Choice Paradox. This is done in two stages. First, we have a close look at the logical interpretation of the natural language statements that lead to the paradox. This leads to making the important distinction of permitting an action in isolation or permitting it in combination with some or any other action, i.e. in a certain context. This distinction is made formal by the introduction of a new operator on actions, which forces them to be performed in isolation. With this distinction made clear it is possible to give a "new", stronger definition for the permission operator, which solves the Free Choice Paradox and which does not lead to any new inconsistencies or paradoxes

    In Search of an Integrated Logic of Conviction and Intention

    Get PDF
    According to a two-level criterion for combination tests in the field of ordinary language (C-CT), moral 'ought'-sentences may be taken to imply 'I intend'-sentences partly semantically and partly pragmatically. If so, a trenchant linguistic analysis of the concept of moral obligation cannot do without a non-classical logic which allows to model these important kinds of ordinary-language implications by means of purely syntactical derivations. For this purpose, an integrated logic of conviction and intention has been tentatively devised by way of a doxastically, buletically, and pragmatically extended calculus of natural deduction. This system of buletic logic cannot even be launched without one or two derivation rules of deductive closedness. However, these very closedness rules appear to be responsible for buletic paradoxes which are analogous to paradoxes long since known from other, less exotic branches of logic but at first sight look much more virulent. After having scrutinized two potential strategies for coping with the paradoxes of buletic logic, finally we can convince ourselves that these paradoxes, as well as their familiar non-buletic counterparts, are but apparent paradoxes, provided we consistently lean on C-CT and do not let pragmatical considerations intrude into purely logical ones

    LOGICAL ANALYSIS AND LATER MOHIST LOGIC: SOME COMPARATIVE REFLECTIONS [abstract]

    Get PDF
    Any philosophical method that treats the analysis of the meaning of a sentence or expression in terms of a decomposition into a set of conceptually basic constituent parts must do some theoretical work to explain the puzzles of intensionality. This is because intensional phenomena appear to violate the principle of compositionality, and the assumption of compositionality is the principal justification for thinking that an analysis will reveal the real semantical import of a sentence or expression through a method of decomposition. Accordingly, a natural strategy for dealing with intensionality is to argue that it is really just an isolable, aberrant class of linguistic phenomena that poses no general threat to the thesis that meaning is basically compositional. On the other hand, the later Mohists give us good reason to reject this view. What we learn from them is that there may be basic limitations in any analytical technique that presupposes that meaning is perspicuously represented only when it has been fully decomposed into its constituent parts. The purpose of this paper is to (a) explain why the Mohists found the issue of intensionality to be so important in their investigations of language, and (b) defend the view that Mohist insights reveal basic limitations in any technique of analysis that is uncritically applied with a decompositional approach in mind, as are those that are often pursued in the West in the context of more general epistemological and metaphysical programs

    Semantic model-driven development of web service architectures.

    Get PDF
    Building service-based architectures has become a major area of interest since the advent of Web services. Modelling these architectures is a central activity. Model-driven development is a recent approach to developing software systems based on the idea of making models the central artefacts for design representation, analysis, and code generation. We propose an ontology-based engineering methodology for semantic model-driven composition and transformation of Web service architectures. Ontology technology as a logic-based knowledge representation and reasoning framework can provide answers to the needs of sharable and reusable semantic models and descriptions needed for service engineering. Based on modelling, composition and code generation techniques for service architectures, our approach provides a methodological framework for ontology-based semantic service architecture

    Metric Semantics and Full Abstractness for Action Refinement and Probabilistic Choice

    Get PDF
    This paper provides a case-study in the field of metric semantics for probabilistic programming. Both an operational and a denotational semantics are presented for an abstract process language L_pr, which features action refinement and probabilistic choice. The two models are constructed in the setting of complete ultrametric spaces, here based on probability measures of compact support over sequences of actions. It is shown that the standard toolkit for metric semantics works well in the probabilistic context of L_pr, e.g. in establishing the correctness of the denotational semantics with respect to the operational one. In addition, it is shown how the method of proving full abstraction --as proposed recently by the authors for a nondeterministic language with action refinement-- can be adapted to deal with the probabilistic language L_pr as well

    Free choice and contextually permitted actions

    Get PDF
    We present a solution to the paradox of free choice permission by introducing strong and weak permission in a deontic logic of action. It is shown how counterintuitive consequences of strong permission can be avoided by limiting the contexts in which an action can be performed. This is done by introducing the only operator, which allows us to say that only is performed (and nothing else), and by introducing contextual interpretation of action term

    Cognitive Computation sans Representation

    Get PDF
    The Computational Theory of Mind (CTM) holds that cognitive processes are essentially computational, and hence computation provides the scientific key to explaining mentality. The Representational Theory of Mind (RTM) holds that representational content is the key feature in distinguishing mental from non-mental systems. I argue that there is a deep incompatibility between these two theoretical frameworks, and that the acceptance of CTM provides strong grounds for rejecting RTM. The focal point of the incompatibility is the fact that representational content is extrinsic to formal procedures as such, and the intended interpretation of syntax makes no difference to the execution of an algorithm. So the unique 'content' postulated by RTM is superfluous to the formal procedures of CTM. And once these procedures are implemented in a physical mechanism, it is exclusively the causal properties of the physical mechanism that are responsible for all aspects of the system's behaviour. So once again, postulated content is rendered superfluous. To the extent that semantic content may appear to play a role in behaviour, it must be syntactically encoded within the system, and just as in a standard computational artefact, so too with the human mind/brain - it's pure syntax all the way down to the level of physical implementation. Hence 'content' is at most a convenient meta-level gloss, projected from the outside by human theorists, which itself can play no role in cognitive processing

    Designing Normative Theories for Ethical and Legal Reasoning: LogiKEy Framework, Methodology, and Tool Support

    Full text link
    A framework and methodology---termed LogiKEy---for the design and engineering of ethical reasoners, normative theories and deontic logics is presented. The overall motivation is the development of suitable means for the control and governance of intelligent autonomous systems. LogiKEy's unifying formal framework is based on semantical embeddings of deontic logics, logic combinations and ethico-legal domain theories in expressive classic higher-order logic (HOL). This meta-logical approach enables the provision of powerful tool support in LogiKEy: off-the-shelf theorem provers and model finders for HOL are assisting the LogiKEy designer of ethical intelligent agents to flexibly experiment with underlying logics and their combinations, with ethico-legal domain theories, and with concrete examples---all at the same time. Continuous improvements of these off-the-shelf provers, without further ado, leverage the reasoning performance in LogiKEy. Case studies, in which the LogiKEy framework and methodology has been applied and tested, give evidence that HOL's undecidability often does not hinder efficient experimentation.Comment: 50 pages; 10 figure

    Process algebra for performance evaluation

    Get PDF
    This paper surveys the theoretical developments in the field of stochastic process algebras, process algebras where action occurrences may be subject to a delay that is determined by a random variable. A huge class of resource-sharing systems – like large-scale computers, client–server architectures, networks – can accurately be described using such stochastic specification formalisms. The main emphasis of this paper is the treatment of operational semantics, notions of equivalence, and (sound and complete) axiomatisations of these equivalences for different types of Markovian process algebras, where delays are governed by exponential distributions. Starting from a simple actionless algebra for describing time-homogeneous continuous-time Markov chains, we consider the integration of actions and random delays both as a single entity (like in known Markovian process algebras like TIPP, PEPA and EMPA) and as separate entities (like in the timed process algebras timed CSP and TCCS). In total we consider four related calculi and investigate their relationship to existing Markovian process algebras. We also briefly indicate how one can profit from the separation of time and actions when incorporating more general, non-Markovian distributions
    corecore