49,708 research outputs found

    Research opportunities for argumentation in social networks

    Full text link
    Nowadays, many websites allow social networking between their users in an explicit or implicit way. In this work, we show how argumentation schemes theory can provide a valuable help to formalize and structure on-line discussions and user opinions in decision support and business oriented websites that held social networks between their users. Two real case studies are studied and analysed. Then, guidelines to enhance social decision support and recommendations with argumentation are provided.This work summarises results of the authors joint research, funded by an STMS of the Agreement Technologies COST Action 0801, by the Spanish government grants [CONSOLIDER-INGENIO 2010 CSD2007-00022, and TIN2012-36586-C03-01] and by the GVA project [PROMETEO 2008/051].Heras Barberá, SM.; Atkinson, KM.; Botti Navarro, VJ.; Grasso, F.; Julian Inglada, VJ.; Mcburney, PJ. (2013). Research opportunities for argumentation in social networks. Artificial Intelligence Review. 39(1):39-62. doi:10.1007/s10462-012-9389-0S3962391Amgoud L (2009) Argumentation for decision making. Argumentation in artificial intelligence. Springer, BerlinAnderson P (2007) What is Web 2.0? Ideas, technologies and implications for education. JISC Iechnology and Standards Watch reportBentahar J, Meyer CJJ, Moulin B (2007) Securing agent-oriented systems: an argumentation and reputation-based approach. In: Proceedings of the 4th international conference on information technology: new generations (ITNG 2007), IEEE Computer Society, pp 507–515Buckingham Shum S (2008) Cohere: towards Web 2.0 argumentation. In: Proceedings of the 2nd international conference on computational models of argument, COMMA, pp 28–30Burke R (2002) Hybrid recommender systems: survey and experiments. User Model User-Adapt Interact 12:331–370Cartwright D, Atkinson K (2008) Political engagement through tools for argumentation. In: Proceedings of the second international conference on computational models of argument (COMMA 2008), pp 116–127Chesñevar C, McGinnis J, Modgil S, Rahwan I, Reed C, Simari G, South M, Vreeswijk G, Willmott S (2006) Towards an argument interchange format. Knowl Eng Rev 21(4):293–316Chesñevar CI, Maguitman AG, Gonzàlez MP (2009) Empowering recommendation technologies through argumentation. Argumentation in artificial intelligence. Springer, Berlin, pp 403–422García AJ, Dix J, Simari GR (2009) Argument-based logic programming. Argumentation in artificial intelligence. Springer, BerlinGolbeck J (2006) Generating predictive movie recommendations from trust in social networks. In: Proceedings of the fourth international conference on trust management, LNCS, vol 3986, 93–104Gordon T, Prakken H, Walton D (2007) The Carneades model of argument and burden of proof. Artif Intell 171(10–15):875–896Guha R, Kumar R, Raghavan P, Tomkins A (2004) Propagating trust and distrust. In: Proceedings of the 13th international conference on, World Wide Web, pp 403–412Heras S, Navarro M, Botti V, Julián V (2009) Applying dialogue games to manage recommendation in social networks. In: Proceedings of the 6th international workshop on argumentation in multi-agent aystems, ArgMASHeras S, Atkinson K, Botti V, Grasso F, Julián V, McBurney P (2010a) How argumentation can enhance dialogues in social networks. In: Proceedings of the 3rd international conference on computational models of argument, COMMA, vol 216, pp 267–274Heras S, Atkinson K, Botti V, Grasso F, Julián V, McBurney P (2010b) Applying argumentation to enhance dialogues in social networks. In: ECAI 2010 workshop on computational models of natural argument, CMNA, pp 10–17Karacapilidis N, Tzagarakis M (2007) Web-based collaboration and decision making support: a multi-disciplinary approach. Web-Based Learn Teach Technol 2(4):12–23Kim D, Benbasat I (2003) Trust-related arguments in internet stores: a framework for evaluation. J Electron Commer Res 4(2):49–64Kim D, Benbasat I (2006) The effects of trust-assuring arguments on consumer trust in internet stores: application of Toulmin’s model of argumentation. Inf Syst Rese 17(3):286–300Laera L, Tamma V, Euzenat J, Bench-Capon T, Payne T (2006) Reaching agreement over ontology alignments. In: Proceedings of the 5th international semantic web conference (ISWC 2006)Lange C, Bojãrs U, Groza T, Breslin J, Handschuh S (2008) Expressing argumentative discussions in social media sites. In: Social data on the web (SDoW2008) workshop at the 7th international semantic web conferenceLinden G, Smith B, York J (2003) Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput 7(1):76–80Linden G, Hong J, Stonebraker M, Guzdial M (2009) Recommendation algorithms, online privacy and more. Commun ACM, 52(5)Mika P (2007) Ontologies are us: a unified model of social networks and semantics. J Web Semant 5(1):5–15Montaner M, López B, de la Rosa JL (2002) Opinion-based filtering through trust. In: Cooperative information agents VI, LNCS, vol 2446, pp 127–144Ontañón S, Plaza E (2008) Argumentation-based information exchange in prediction markets. In: Proceedings of the 5th international workshop on argumentation in multi-agent systems, ArgMASPazzani MJ, Billsus D (2007) Content-based recommendation systems. In: The adaptive web, LNCS, vol 4321, pp 325–341Rahwan I, Zablith F, Reed C (2007) Laying the foundations for a world wide argument web. Artif Intell 171(10–15):897–921Rahwan I, Banihashemi B (2008) Arguments in OWL: a progress report. In: Proceedings of the 2nd international conference on computational models of argument (COMMA), pp 297–310Reed C, Walton D (2007) Argumentation schemes in dialogue. In: Dissensus and the search for common ground, OSSA-07, volume CD-ROM, pp 1–11Sabater J, Sierra C (2002) Reputation and social network analysis in multi-agent systems. In: Proceedings of the 1st international joint conference on autonomous agents and multiagent systems, vol 1, pp 475–482Schafer JB, Konstan JA, Riedl J (2001) E-commerce recommendation applications. Data Min Knowl Discov 5:115–153Schafer JB, Frankowski D, Herlocker J, Sen S (2007) Collaborative filtering recommender systems. In: The adaptive web, LNCS, vol 4321, pp 291–324Schneider J, Groza T, Passant A (2012) A review of argumentation for the aocial semantic web. Semantic web-interoperability, usability, applicability. IOS Press, Washington, DCTempich C, Pinto HS, Sure Y, Staab S (2005) An argumentation ontology for distributed, loosely-controlled and evolvInG Engineering processes of oNTologies (DILIGENT). In: Proceedings of the 2nd European semantic web conference, ESWC, pp 241–256Toulmin SE (1958) The uses of argument. Cambridge University Press, Cambridge, UKTrojahn C, Quaresma P, Vieira R, Isaac A (2009) Comparing argumentation frameworks for composite ontology matching. in: Proceedings of the 6th international workshop on argumentation in multi-agent systems, ArgMASTruthMapping. http://truthmapping.com/Walter FE, Battiston S, Schweitzer F (2007) A model of a trust-based recommendation system on a social network. J Auton Agents Multi-Agent Syst 16(1):57–74Walton D, Krabbe E (1995) Commitment in dialogue: basic concepts of interpersonal reasoning. State University of New York Press, New York, NYWalton D, Reed C, Macagno F (2008) Argumentation schemes. Cambridge University Press, CambridgeWells S, Gourlay C, Reed C (2009) Argument blogging. Computational models of natural argument, CMNAWyner A, Schneider J (2012) Arguing from a point of view. In: Proceedings of the first international conference on agreement technologie

    Practical applications of multi-agent systems in electric power systems

    Get PDF
    The transformation of energy networks from passive to active systems requires the embedding of intelligence within the network. One suitable approach to integrating distributed intelligent systems is multi-agent systems technology, where components of functionality run as autonomous agents capable of interaction through messaging. This provides loose coupling between components that can benefit the complex systems envisioned for the smart grid. This paper reviews the key milestones of demonstrated agent systems in the power industry and considers which aspects of agent design must still be addressed for widespread application of agent technology to occur

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    Social Mental Shaping: Modelling the Impact of Sociality on Autonomous Agents' Mental States

    No full text
    This paper presents a framework that captures how the social nature of agents that are situated in a multi-agent environment impacts upon their individual mental states. Roles and relationships provide an abstraction upon which we develop the notion of social mental shaping. This allows us to extend the standard Belief-Desire-Intention model to account for how common social phenomena (e.g. cooperation, collaborative problem-solving and negotiation) can be integrated into a unified theoretical perspective that reflects a fully explicated model of the autonomous agent's mental state

    Meetings and Meeting Modeling in Smart Environments

    Get PDF
    In this paper we survey our research on smart meeting rooms and its relevance for augmented reality meeting support and virtual reality generation of meetings in real time or off-line. The research reported here forms part of the European 5th and 6th framework programme projects multi-modal meeting manager (M4) and augmented multi-party interaction (AMI). Both projects aim at building a smart meeting environment that is able to collect multimodal captures of the activities and discussions in a meeting room, with the aim to use this information as input to tools that allow real-time support, browsing, retrieval and summarization of meetings. Our aim is to research (semantic) representations of what takes place during meetings in order to allow generation, e.g. in virtual reality, of meeting activities (discussions, presentations, voting, etc.). Being able to do so also allows us to look at tools that provide support during a meeting and at tools that allow those not able to be physically present during a meeting to take part in a virtual way. This may lead to situations where the differences between real meeting participants, human-controlled virtual participants and (semi-) autonomous virtual participants disappear
    corecore