1,896 research outputs found

    Multiple-Aspect Analysis of Semantic Trajectories

    Get PDF
    This open access book constitutes the refereed post-conference proceedings of the First International Workshop on Multiple-Aspect Analysis of Semantic Trajectories, MASTER 2019, held in conjunction with the 19th European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, in Würzburg, Germany, in September 2019. The 8 full papers presented were carefully reviewed and selected from 12 submissions. They represent an interesting mix of techniques to solve recurrent as well as new problems in the semantic trajectory domain, such as data representation models, data management systems, machine learning approaches for anomaly detection, and common pathways identification

    Towards a Formal Semantics of Flight Plans and Trajectories

    Get PDF
    In the National Airspace System, ight plans are often used only as a planning tool by air trac controllers and aircraft operators. These plans are implicitly translated into trajectories by the pilot or by the ight management system, and subsequently own by the aircraft. This translation process inevitably introduces di erences between the plan and the trajectory. However, given the current intended usage, exact correspondence between the plan and the trajectory is not needed. To achieve greater capacity and eciency, future air trac management concepts are being designed around the use of trajectories where predictability is extremely important. In this paper, a mathematical relationship between ight plans and trajectories is explored with the goal of making feasible, highly accurate predictions of future positions and velocities of aircraft. The goal here is to describe, in mathematically precise detail, a formal language of trajectories, whereby all receivers of the trajectory information will be able to arrive at precisely the same trajectory predication and to do this without having aircraft broadcast a large amount of data. Although even a four-dimensional ight plan is simple in structure, this paper will show that it is inherently ambiguous and will explore these issues in detail. In e ect, we propose that a rigorous semantics for ight plans can be developed and this will serve as an important stepping stone towards trajectory-based operations in the National Airspace System

    Air traffic generation for new terminal area air traffic management concepts design and evaluation

    Get PDF
    This paper describes two systems that can be used to obtain realistic random traffic samples in a terminal area: a real traffic analyser and a synthetic traffic generator. These two systems allow the air traffic management (ATM) engineer to gain insight on the traffic structure of the area under analysis, and allow obtaining realistic traffic samples enabling the evaluation of new operational concepts, the validation or system performance measurement after procedure changes, the analysis of ATM performance under forecasted future traffic changes, etc. Together with the design of the system, the work provides insight of user interfaces and describes the potential uses of such tools in an integrated ATM system

    Intention-Aware Planner for Robust and Safe Aerial Tracking

    Full text link
    The intention of the target can help us to estimate its future motion state more accurately. This paper proposes an intention-aware planner to enhance safety and robustness in aerial tracking applications. Firstly, we utilize the Mediapipe framework to estimate target's pose. A risk assessment function and a state observation function are designed to predict the target intention. Afterwards, an intention-driven hybrid A* method is proposed for target motion prediction, ensuring that the target's future positions align with its intention. Finally, an intention-aware optimization approach, in conjunction with particular penalty formulations, is designed to generate a spatial-temporal optimal trajectory. Benchmark comparisons validate the superior performance of our proposed methodology across diverse scenarios. This is attributed to the integration of the target intention into the planner through coupled formulations.Comment: 7 pages, 10 figures, submitted to 2024 IEEE International Conference on Robotics and Automation (ICRA

    Engage D1.2 Final Project Results Report

    Get PDF
    This deliverable summarises the activities and results of Engage, the SESAR 2020 Knowledge Transfer Network (KTN). The KTN initiated and supported multiple activities for SESAR and the European air traffic management (ATM) community, including PhDs, focused catalyst fund projects, thematic workshops, summer schools and the launch of a wiki as the one-stop, go-to source for ATM research and knowledge in Europe. Key throughout was the integration of exploratory and industrial research, thus expediting the innovation pipeline and bringing researchers together. These activities laid valuable foundations for the SESAR Digital Academy

    Intelligent flight control systems

    Get PDF
    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms

    Machine learning for aircraft trajectory prediction: a solution for pre-tactical air traffic flow management

    Get PDF
    Pla de Doctorats Industrials de la Generalitat de Catalunya(English) The goal of air traffic flow and capacity management (ATFCM) is to ensure that airport and airspace capacity meet traffic demand while optimising traffic flows to avoid exceeding the available capacity when it cannot be further increased. In Europe, ATFCM is handled by EUROCONTROL, in its role of Network Manager (NM), and comprises three phases: strategic, pre-tactical, and tactical. This thesis is focused on the pre-tactical phase, which covers the six days prior to the day of operations. During the pre-tactical phase, few or no flight plans (FPLs) have been filed by airspace users (AUs) and the only flight information available to the NM are the so-called flight intentions (FIs), consisting mainly of flight schedules. Trajectory information becomes available only when the AUs send their FPLs. This information is required to ensure a correct allocation of resources in coordination with air navigation service providers (ANSPs). To forecast FPLs before they are filed by the AUs, the NM relies on the PREDICT tool, which generates traffic forecasts for the whole European Civil Aviation Conference (ECAC) area according to the trajectories chosen by the same or similar flights in the recent past, without taking advantage of the information on AU choices encoded in historical data. The goal of the present PhD thesis is to develop a solution for pre-tactical traffic forecast that improves the predictive performance of the PREDICT tool while being able to cope with the entire set of flights in the ECAC network in a computationally efficient manner. To this end, trajectory forecasting approaches based on machine learning models trained on historical data have been explored, evaluating their predictive performance. In the application of machine learning techniques to trajectory prediction, three fundamental methodological choices have to be made: (i) approach to trajectory clustering, which is used to group similar trajectories in order to simplify the trajectory prediction problem; (ii) model formulation; and (iii) model training approach. The contribution of this PhD thesis to the state of the-art lies in the first two areas. First, we have developed a novel route clustering technique based on the area comprised between two routes that reduces the required computational time and increases the scalability with respect to other clustering techniques described in the literature. Second, we have developed, tested and evaluated two new modelling approaches for route prediction. The first approach consists in building and training an independent machine learning model for each origin destination (OD) pair in the network, taking as inputs different variables available from FIs plus other variables related to weather and to the number of regulations. This approach improves the performance of the PREDICT model, but it also has an important limitation: it does not consider changes in the airspace structure, thus being unable to predict routes not available in the training data and sometimes predicting routes that are not compatible with the airspace structure. The second approach is an airline-based approach, which consists in building and training a model for each airline. The limitations of the first model are overcome by considering as input variables not only the variables available from the FIs and the weather, but also airspace restrictions and route characteristics (e.g., route cost, length, etc.). The airline-based approach yields a significant improvement with respect to PREDICT and to the OD pair-based model, achieving a route prediction accuracy of 0.896 (versus PREDICT’s accuracy of 0.828), while being able to deal with the full ECAC network within reasonable computational time. These promising results encourage us to be optimistic about the future implementation of the proposed system.(Català) L’objectiu de la gestió de demanda i capacitat de trànsit aeri (ATFCM per les sigles en anglès) és garantir que la capacitat aeroportuària i de l’espai aeri satisfacin la demanda de trànsit mentre s’optimitzen els fluxos per evitar excedir la capacitat disponible quan aquesta no es pot augmentar més. A Europa, l’ATFCM està a càrrec d’EUROCONTROL, i consta de tres fases: estratègica, pre-tàctica i tàctica. Aquesta tesi se centra en la pre-tàctica, que inclou els sis dies previs al dia d’operacions. Durant la fase pre-tàctica, els de l'espai aeri han presentat pocs o cap pla de vol i l’única informació sobre els vols disponible són els anomenats intencions de vol (principalment els horaris). La informació de la trajectòria només està disponible quan els usuaris envien els seus pla. Aquesta informació és necessària per assegurar una assignació correcta de recursos en coordinació amb els proveïdors de serveis de. Per predir els plans abans que siguin presentats, EUROCONTROL es recolza en l'eina PREDICT, que genera prediccions de trànsit d'acord amb les trajectòries escollides per vols similars el passat recent, sense aprofitar la informació sobre les decisions en dades històriques. L'objectiu de la present tesi doctoral és millorar l'exercici predictiu de l'eina PREDICT mitjançant el desenvolupament d'una eina que pugui gestionar tots els vols a Europa de manera eficient. Per fer-ho, s’han explorat diferents enfocaments de predicció de trajectòries basats en models d’aprenentatge automàtic entrenats amb dades històriques, avaluant l’exercici de la predicció. A l’hora d’aplicar les tècniques d’aprenentatge automàtic per a la predicció de trajectòries, s’han identificat tres eleccions metodològiques fonamentals: (i) el clustering de trajectòries, que s’utilitza per agrupar trajectòries similars per simplificar el problema de predicció de trajectòries; (ii) la formulació del model d’aprenentatge automàtic; i (iii) l’aproximació seguida per entrenar el model. La contribució d’aquesta tesi doctoral a l’estat de l’art es troba a les dues primeres àrees. Primer, hem desenvolupat una nova tècnica de clustering de rutes, basada en l’àrea compresa entre dues rutes, que redueix el temps computacional requerit i augmenta l’escalabilitat respecte a altres tècniques de clustering descrites a la literatura. En segon lloc, hem desenvolupat, provat i avaluat dos nous enfocaments de modelatge per a la predicció de rutes. El primer enfocament consisteix a construir i entrenar un model d’aprenentatge automàtic independent per a cada parell de d'aeroports a la xarxa, prenent com a entrades diferents variables disponibles de les intencions més altres variables relacionades amb el clima i el nombre de regulacions. Aquest enfocament millora el rendiment del model PREDICT, però també té una limitació important: no considera canvis en l’estructura de l’espai aeri, per la qual cosa no podeu predir rutes que no estan disponibles a les dades d’entrenament i, de vegades, podeu predir rutes que no són compatibles amb l’estructura de l’espai aeri. El segon enfocament, basat en les aerolínies, consisteix a construir i entrenar un model independent per a cada aerolínia. Les limitacions del primer model se superen en considerar com a variables d’entrada no només les variables disponibles dels intencions i el clima, sinó també les restriccions de l’espai aeri i les característiques de la ruta (p. ex., cost de la ruta, longitud, etc.). L’enfocament basat en aerolínies produeix una millora significativa respecte a PREDICT i al model basat en parells d'aeroports, aconseguint una precisió de predicció de ruta del 0,896 (comparant amb la precisió de PREDICT del 0,828), alhora que el problema pot escalar a tota l'àrea al complet amb un temps de computació raonable.(Español) El objetivo de la gestión de demanda y capacidad de tráfico (ATFCM por sus siglas en inglés) es garantizar que la capacidad aeroportuaria y del espacio aéreo satisfagan la demanda de tráfico mientras se optimizan los flujos para evitar exceder la capacidad disponible cuando esta no se puede aumentar más. En Europa, el ATFCM está a cargo de EUROCONTROL y consta de tres fases: estratégica, pre-táctica y táctica. Esta tesis se centra en la pre-táctica, que abarca los seis días previos al día de operaciones. Durante la fase pre-táctica, los usuarios del espacio aéreo han presentado pocos o ningún plan de vuelo y la única información sobre los vuelos disponible para EUROCONTROL son las llamados Intenciones de vuelo, que consisten principalmente en los horarios. La trayectoria está disponible sólo cuando los usuarios envían sus planes. Esta información es necesaria para asegurar una correcta asignación de recursos en coordinación con los provedores de servicios de navegación aérea de los distintos estados. Para predecir los FPLs antes de que sean presentados, EUROCONTROL se apoya en la herramienta PREDICT, que genera predicciones de tráfico de acuerdo las trayectorias elegidas por vuelos similares en el pasado reciente, sin aprovechar la información sobre las decisiones en datos históricos. El objetivo de la presente tesis doctoral es mejorar el desempeño predictivo de la herramienta PREDICT mediante el desarrollo de una herramienta que pueda gestionar todos los vuelos en Europa de una forma eficiente. Para ello, se han explorado diferentes enfoques de predicción de trayectorias basados en modelos de aprendizaje automático. A la hora de aplicar las técnicas de aprendizaje automático para predicción de trayectorias, se han identificado tres elecciones metodológicas fundamentales: (i) el clustering de trayectorias, que se utiliza para agrupar trayectorias similares a fin de simplificar el problema de predicción de trayectorias; (ii) la formulación del modelo de aprendizaje automático; y (iii) la aproximación seguida para entrenar el modelo. La contribución de esta tesis doctoral al estado del arte se encuentra en las dos primeras áreas. Primero, hemos desarrollado una novedosa técnica de clustering de rutas, basada en el área comprendida entre dos rutas, que reduce el tiempo computacional requerido y aumenta la escalabilidad con respecto a otras técnicas de clustering en la literatura. En segundo lugar, hemos desarrollado, probado y evaluado dos nuevos enfoques de modelado para la predicción de rutas. El primer enfoque consiste en construir y entrenar un modelo de aprendizaje automático independiente para cada par de aeropuertos en la red, tomando como entradas diferentes variables disponibles de las intenciones de vuelo más otras variables relacionadas con la meteorología y el número de regulaciones. Este enfoque mejora el rendimiento del modelo PREDICT, pero también tiene una limitación importante: no considera cambios en la estructura del espacio aéreo, por lo que no xvii puede predecir rutas que no están disponibles en los datos de entrenamiento y, a veces, puede predecir rutas que no son compatibles con el estructura del espacio aéreo. El segundo enfoque, basado en las aerolíneas, consiste en construir y entrenar un modelo independiente para cada aerolínea. Las limitaciones del primer modelo se superan al considerar como variables de entrada no solo las variables disponibles de las FIs y la meteorología, sino también las restricciones del espacio aéreo y las características de la ruta (p. ej., coste de la ruta, longitud, etc.). El enfoque basado en aerolíneas produce una mejora significativa con respecto a PREDICT y al modelo basado en pares de aeropuertos, logrando una precisión de predicción de ruta de 0,896 (frente a la precisión de PREDICT de 0,828), a la vez que puede lidiar con toda la red en un tiempo de computación razonable. Estos prometedores resultados nos animan a ser optimistas sobre una futura implementación del sistema propuesto.Ciència i tecnologies aeroespacial

    Planning and Navigation in Dynamic Environments for Mobile Robots and Micro Aerial Vehicles

    Get PDF
    Reliable and robust navigation planning and obstacle avoidance is key for the autonomous operation of mobile robots. In contrast to stationary industrial robots that often operate in controlled spaces, planning for mobile robots has to take changing environments and uncertainties into account during plan execution. In this thesis, planning and obstacle avoidance techniques are proposed for a variety of ground and aerial robots. Common to most of the presented approaches is the exploitation of the nature of the underlying problem to achieve short planning times by using multiresolution or hierarchical approaches. Short planning times allow for continuous and fast replanning to take the uncertainty in the environment and robot motion execution into account. The proposed approaches are evaluated in simulation and real-world experiments. The first part of this thesis addresses planning for mobile ground robots. One contribution is an approach to grasp and object removal planning to pick objects from a transport box with a mobile manipulation robot. In a multistage process, infeasible grasps are pruned in offline and online processing steps. Collision-free endeffector trajectories are planned to the remaining grasps until a valid removal trajectory can be found. An object-centric local multiresolution representation accelerates trajectory planning. The mobile manipulation components are evaluated in an integrated mobile bin-picking system. Local multiresolution planning is employed for path planning for humanoid soccer robots as well. The used Nao robot is equipped with only relatively low computing power. A resource-efficient path planner including the anticipated movements of opponents on the field is developed as part of this thesis. In soccer games an important subproblem is to reach a position behind the ball to dribble or kick it towards the goal. By the assumption that the opponents have the same intention, an explicit representation of their movements is possible. This leads to paths that facilitate the robot to reach its target position with a higher probability without being disturbed by the other robot. The evaluation for the planner is performed in a physics-based soccer simulation. The second part of this thesis covers planning and obstacle avoidance for micro aerial vehicles (MAVs), in particular multirotors. To reduce the planning complexity, the planning problem is split into a hierarchy of planners running on different levels of abstraction, i.e., from abstract to detailed environment descriptions and from coarse to fine plans. A complete planning hierarchy for MAVs is presented, from mission planners for multiple application domains to low-level obstacle avoidance. Missions planned on the top layer are executed by means of coupled allocentric and egocentric path planning. Planning is accelerated by global and local multiresolution representations. The planners can take multiple objectives into account in addition to obstacle costs and path length, e.g., sensor constraints. The path planners are supplemented by trajectory optimization to achieve dynamically feasible trajectories that can be executed by the underlying controller at higher velocities. With the initialization techniques presented in this thesis, the convergence of the optimization problem is expedited. Furthermore, frequent reoptimization of the initial trajectory allows for the reaction to changes in the environment without planning and optimizing a complete new trajectory. Fast, reactive obstacle avoidance based on artificial potential fields acts as a safety layer in the presented hierarchy. The obstacle avoidance layer employs egocentric sensor data and can operate at the data acquisition frequency of up to 40 Hz. It can slow-down and stop the MAVs in front of obstacles as well as avoid approaching dynamic obstacles. We evaluate our planning and navigation hierarchy in simulation and with a variety of MAVs in real-world applications, especially outdoor mapping missions, chimney and building inspection, and automated stocktaking.Planung und Navigation in dynamischen Umgebungen für mobile Roboter und Multikopter Zuverlässige und sichere Navigationsplanung und Hindernisvermeidung ist ein wichtiger Baustein für den autonomen Einsatz mobiler Roboter. Im Gegensatz zu klassischen Industrierobotern, die in der Regel in abgetrennten, kontrollierten Bereichen betrieben werden, ist es in der mobilen Robotik unerlässlich, Änderungen in der Umgebung und die Unsicherheit bei der Aktionsausführung zu berücksichtigen. Im Rahmen dieser Dissertation werden Verfahren zur Planung und Hindernisvermeidung für eine Reihe unterschiedlicher Boden- und Flugroboter entwickelt und vorgestellt. Den meisten beschriebenen Ansätzen ist gemein, dass die Struktur der zu lösenden Probleme ausgenutzt wird, um Planungsprozesse zu beschleunigen. Häufig ist es möglich, mit abnehmender Genauigkeit zu planen desto weiter eine Aktion in der Zeit oder im Ort entfernt ist. Dieser Ansatz wird lokale Multiresolution genannt. In anderen Fällen ist eine Zerlegung des Problems in Schichten unterschiedlicher Genauigkeit möglich. Die damit zu erreichende Beschleunigung der Planung ermöglicht ein häufiges Neuplanen und somit die Reaktion auf Änderungen in der Umgebung und Abweichungen bei den ausgeführten Aktionen. Zur Evaluation der vorgestellten Ansätze werden Experimente sowohl in der Simulation als auch mit Robotern durchgeführt. Der erste Teil dieser Dissertation behandelt Planungsmethoden für mobile Bodenroboter. Um Objekte mit einem mobilen Roboter aus einer Transportkiste zu greifen und zur Weiterverarbeitung zu einem Arbeitsplatz zu liefern, wurde ein System zur Planung möglicher Greifposen und hindernisfreier Endeffektorbahnen entwickelt. In einem mehrstufigen Prozess werden mögliche Griffe an bekannten Objekten erst in mehreren Vorverarbeitungsschritten (offline) und anschließend, passend zu den erfassten Objekten, online identifiziert. Zu den verbleibenden möglichen Griffen werden Endeffektorbahnen geplant und, bei Erfolg, ausgeführt. Die Greif- und Bahnplanung wird durch eine objektzentrische lokale Multiresolutionskarte beschleunigt. Die Einzelkomponenten werden in einem prototypischen Gesamtsystem evaluiert. Eine weitere Anwendung für die lokale Multiresolutionsplanung ist die Pfadplanung für humanoide Fußballroboter. Zum Einsatz kommen Nao-Roboter, die nur über eine sehr eingeschränkte Rechenleistung verfügen. Durch die Reduktion der Planungskomplexität mit Hilfe der lokalen Multiresolution, wurde die Entwicklung eines Planers ermöglicht, der zusätzlich zur aktuellen Hindernisfreiheit die Bewegung der Gegenspieler auf dem Feld berücksichtigt. Hierbei liegt der Fokus auf einem wichtigen Teilproblem, dem Erreichen einer guten Schussposition hinter dem Ball. Die Tatsache, dass die Gegenspieler vergleichbare Ziele verfolgen, ermöglicht es, Annahmen über mögliche Laufwege zu treffen. Dadurch ist die Planung von Pfaden möglich, die das Risiko, durch einen Gegenspieler passiv geblockt zu werden, reduzieren, so dass die Schussposition schneller erreicht wird. Dieser Teil der Arbeit wird in einer physikalischen Fußballsimulation evaluiert. Im zweiten Teil dieser Dissertation werden Methoden zur Planung und Hindernisvermeidung von Multikoptern behandelt. Um die Planungskomplexität zu reduzieren, wird das zu lösenden Planungsproblem hierarchisch zerlegt und durch verschiedene Planungsebenen verarbeitet. Dabei haben höhere Planungsebenen eine abstraktere Weltsicht und werden mit niedriger Frequenz ausgeführt, zum Beispiel die Missionsplanung. Niedrigere Ebenen haben eine Weltsicht, die mehr den Sensordaten entspricht und werden mit höherer Frequenz ausgeführt. Die Granularität der resultierenden Pläne verfeinert sich hierbei auf niedrigeren Ebenen. Im Rahmen dieser Dissertation wurde eine komplette Planungshierarchie für Multikopter entwickelt, von Missionsplanern für verschiedene Anwendungsgebiete bis zu schneller Hindernisvermeidung. Pfade zur Ausführung geplanter Missionen werden durch zwei gekoppelte Planungsebenen erstellt, erst allozentrisch, und dann egozentrisch verfeinert. Hierbei werden ebenfalls globale und lokale Multiresolutionsrepräsentationen zur Beschleunigung der Planung eingesetzt. Zusätzlich zur Hindernisfreiheit und Länge der Pfade können auf diesen Planungsebenen weitere Zielfunktionen berücksichtigt werden, wie zum Beispiel die Berücksichtigung von Sensorcharakteristika. Ergänzt werden die Planungsebenen durch die Optimierung von Flugbahnen. Diese Flugbahnen berücksichtigen eine angenäherte Flugdynamik und erlauben damit ein schnelleres Verfolgen der optimierten Pfade. Um eine schnelle Konvergenz des Optimierungsproblems zu erreichen, wurde in dieser Arbeit ein Verfahren zur Initialisierung entwickelt. Des Weiteren kommen Methoden zur schnellen Verfeinerung des Optimierungsergebnisses bei Änderungen im Weltzustand zum Einsatz, diese ermöglichen die Reaktion auf neue Hindernisse oder Abweichungen von der Flugbahn, ohne eine komplette Flugbahn neu zu planen und zu optimieren. Die Sicherheit des durch die Planungs- und Optimierungsebenen erstellten Pfades wird durch eine schnelle, reaktive Hindernisvermeidung gewährleistet. Das Hindernisvermeidungsmodul basiert auf der Methode der künstlichen Potentialfelder. Durch die Verwendung dieser schnellen Methode kombiniert mit der Verwendung von nicht oder nur über kurze Zeiträume aggregierte Sensordaten, ermöglicht die Reaktion auf unbekannte Hindernisse, kurz nachdem diese von den Sensoren wahrgenommen wurden. Dabei kann der Multikopter abgebremst oder gestoppt werden, und sich von nähernden Hindernissen entfernen. Die Komponenten der Planungs- und Hindernisvermeidungshierarchie werden sowohl in der Simulation evaluiert, als auch in integrierten Gesamtsystemen mit verschiedenen Multikoptern in realen Anwendungen. Dies sind insbesondere die Kartierung von Innen- und Außenbereichen, die Inspektion von Gebäuden und Schornsteinen sowie die automatisierte Inventur von Lägern

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world
    • …
    corecore