65,612 research outputs found

    Information extraction tools and methods for understanding dialogue in a companion

    Get PDF
    The authors' research was sponsored by the European Commission under EC grant IST-FP6-034434 (Companions).This paper discusses how Information Extraction is used to understand and manage Dialogue in the EU-funded Companions project. This will be discussed with respect to the Senior Companion, one of two applications under development in the EU-funded Companions project. Over the last few years, research in human-computer dialogue systems has increased and much attention has focused on applying learning methods to improving a key part of any dialogue system, namely the dialogue manager. Since the dialogue manager in all dialogue systems relies heavily on the quality of the semantic interpretation of the user’s utterance, our research in the Companions project, focuses on how to improve the semantic interpretation and combine it with knowledge from the Knowledge Base to increase the performance of the Dialogue Manager. Traditionally the semantic interpretation of a user utterance is handled by a natural language understanding module which embodies a variety of natural language processing techniques, from sentence splitting, to full parsing. In this paper we discuss the use of a variety of NLU processes and in particular Information Extraction as a key part of the NLU module in order to improve performance of the dialogue manager and hence the overall dialogue system.peer-reviewe

    Understand-Before-Talk (UBT): A Semantic Communication Approach to 6G Networks

    Full text link
    In Shannon theory, semantic aspects of communication were identified but considered irrelevant to the technical communication problems. Semantic communication (SC) techniques have recently attracted renewed research interests in (6G) wireless because they have the capability to support an efficient interpretation of the significance and meaning intended by a sender (or accomplishment of the goal) when dealing with multi-modal data such as videos, images, audio, text messages, and so on, which would be the case for various applications such as intelligent transportation systems where each autonomous vehicle needs to deal with real-time videos and data from a number of sensors including radars. A notable difficulty of existing SC frameworks lies in handling the discrete constraints imposed on the pursued semantic coding and its interaction with the independent knowledge base, which makes reliable semantic extraction extremely challenging. Therefore, we develop a new lightweight hashing-based semantic extraction approach to the SC framework, where our learning objective is to generate one-time signatures (hash codes) using supervised learning for low latency, secure and efficient management of the SC dynamics. We first evaluate the proposed semantic extraction framework over large image data sets, extend it with domain adaptive hashing and then demonstrate the effectiveness of "semantics signature" in bulk transmission and multi-modal data

    Cognitive approaches and optical multispectral data for semi-automated classification of landforms in a rugged mountainous area

    Get PDF
    This paper introduces a new open source, knowledge-based framework for automatic interpretation of remote sensing images, called InterIMAGE. This framework owns a flexible modular architecture, in which image processing operators can be associated to both root and leaf nodes of the semantic network, which constitutes a differential strategy in comparison to other object-based image analysis platforms currently available. The architecture, main features as well as an overview on the interpretation strategy implemented in InterIMAGE is presented. The paper also reports an experiment on the classification of landforms. Different geomorphometric and textural attributes obtained from ASTER/Terra images were combined with fuzzy logic and drove the interpretation semantic network. Object-based statistical agreement indices, estimated from a comparison between the classified scene and a reference map, were used to assess the classification accuracy. The InterIMAGE interpretation strategy yielded a classification result with strong agreement and proved to be effective for the extraction of landforms

    Semantic Channel Equalizer: Modelling Language Mismatch in Multi-User Semantic Communications

    Full text link
    We consider a multi-user semantic communications system in which agents (transmitters and receivers) interact through the exchange of semantic messages to convey meanings. In this context, languages are instrumental in structuring the construction and consolidation of knowledge, influencing conceptual representation and semantic extraction and interpretation. Yet, the crucial role of languages in semantic communications is often overlooked. When this is not the case, agent languages are assumed compatible and unambiguously interoperable, ignoring practical limitations that may arise due to language mismatching. This is the focus of this work. When agents use distinct languages, message interpretation is prone to semantic noise resulting from critical distortion introduced by semantic channels. To address this problem, this paper proposes a new semantic channel equalizer to counteract and limit the critical ambiguity in message interpretation. Our proposed solution models the mismatch of languages with measurable transformations over semantic representation spaces. We achieve this using optimal transport theory, where we model such transformations as transportation maps. Then, to recover at the receiver the meaning intended by the teacher we operate semantic equalization to compensate for the transformation introduced by the semantic channel, either before transmission and/or after the reception of semantic messages. We implement the proposed approach as an operation over a codebook of transformations specifically designed for successful communication. Numerical results show that the proposed semantic channel equalizer outperforms traditional approaches in terms of operational complexity and transmission accuracy.Comment: This work has been accepted for publication in 2023 IEEE Global Communications Conference (GLOBECOM) SAC: Machine Learning for Communication

    Large Scale Application of Neural Network Based Semantic Role Labeling for Automated Relation Extraction from Biomedical Texts

    Get PDF
    To reduce the increasing amount of time spent on literature search in the life sciences, several methods for automated knowledge extraction have been developed. Co-occurrence based approaches can deal with large text corpora like MEDLINE in an acceptable time but are not able to extract any specific type of semantic relation. Semantic relation extraction methods based on syntax trees, on the other hand, are computationally expensive and the interpretation of the generated trees is difficult. Several natural language processing (NLP) approaches for the biomedical domain exist focusing specifically on the detection of a limited set of relation types. For systems biology, generic approaches for the detection of a multitude of relation types which in addition are able to process large text corpora are needed but the number of systems meeting both requirements is very limited. We introduce the use of SENNA (“Semantic Extraction using a Neural Network Architecture”), a fast and accurate neural network based Semantic Role Labeling (SRL) program, for the large scale extraction of semantic relations from the biomedical literature. A comparison of processing times of SENNA and other SRL systems or syntactical parsers used in the biomedical domain revealed that SENNA is the fastest Proposition Bank (PropBank) conforming SRL program currently available. 89 million biomedical sentences were tagged with SENNA on a 100 node cluster within three days. The accuracy of the presented relation extraction approach was evaluated on two test sets of annotated sentences resulting in precision/recall values of 0.71/0.43. We show that the accuracy as well as processing speed of the proposed semantic relation extraction approach is sufficient for its large scale application on biomedical text. The proposed approach is highly generalizable regarding the supported relation types and appears to be especially suited for general-purpose, broad-scale text mining systems. The presented approach bridges the gap between fast, cooccurrence-based approaches lacking semantic relations and highly specialized and computationally demanding NLP approaches

    Ontologies and Information Extraction

    Full text link
    This report argues that, even in the simplest cases, IE is an ontology-driven process. It is not a mere text filtering method based on simple pattern matching and keywords, because the extracted pieces of texts are interpreted with respect to a predefined partial domain model. This report shows that depending on the nature and the depth of the interpretation to be done for extracting the information, more or less knowledge must be involved. This report is mainly illustrated in biology, a domain in which there are critical needs for content-based exploration of the scientific literature and which becomes a major application domain for IE

    Information extraction

    Get PDF
    In this paper we present a new approach to extract relevant information by knowledge graphs from natural language text. We give a multiple level model based on knowledge graphs for describing template information, and investigate the concept of partial structural parsing. Moreover, we point out that expansion of concepts plays an important role in thinking, so we study the expansion of knowledge graphs to use context information for reasoning and merging of templates

    Empirical Methodology for Crowdsourcing Ground Truth

    Full text link
    The process of gathering ground truth data through human annotation is a major bottleneck in the use of information extraction methods for populating the Semantic Web. Crowdsourcing-based approaches are gaining popularity in the attempt to solve the issues related to volume of data and lack of annotators. Typically these practices use inter-annotator agreement as a measure of quality. However, in many domains, such as event detection, there is ambiguity in the data, as well as a multitude of perspectives of the information examples. We present an empirically derived methodology for efficiently gathering of ground truth data in a diverse set of use cases covering a variety of domains and annotation tasks. Central to our approach is the use of CrowdTruth metrics that capture inter-annotator disagreement. We show that measuring disagreement is essential for acquiring a high quality ground truth. We achieve this by comparing the quality of the data aggregated with CrowdTruth metrics with majority vote, over a set of diverse crowdsourcing tasks: Medical Relation Extraction, Twitter Event Identification, News Event Extraction and Sound Interpretation. We also show that an increased number of crowd workers leads to growth and stabilization in the quality of annotations, going against the usual practice of employing a small number of annotators.Comment: in publication at the Semantic Web Journa
    • …
    corecore