9,588 research outputs found

    Ontology-based semantic image segmentation using mixture models and multiple CRFs

    Get PDF
    Semantic image segmentation is a fundamental yet challenging problem, which can be viewed as an extension of the conventional object detection with close relation to image segmentation and classification. It aims to partition images into non-overlapping regions that are assigned predefined semantic labels. Most of the existing approaches utilize and integrate low-level local features and high-level contextual cues, which are fed into an inference framework such as, the conditional random field (CRF). However, the lack of meaning in the primitives (i.e., pixels or superpixels) and the cues provides low discriminatory capabilities, since they are rarely object-consistent. Moreover, blind combinations of heterogeneous features and contextual cues exploitation through limited neighborhood relations in the CRFs tend to degrade the labeling performance. This paper proposes an ontology-based semantic image segmentation (OBSIS) approach that jointly models image segmentation and object detection. In particular, a Dirichlet process mixture model transforms the low-level visual space into an intermediate semantic space, which drastically reduces the feature dimensionality. These features are then individually weighed and independently learned within the context, using multiple CRFs. The segmentation of images into object parts is hence reduced to a classification task, where object inference is passed to an ontology model. This model resembles the way by which humans understand the images through the combination of different cues, context models, and rule-based learning of the ontologies. Experimental evaluations using the MSRC-21 and PASCAL VOC'2010 data sets show promising results

    Priming Neural Networks

    Full text link
    Visual priming is known to affect the human visual system to allow detection of scene elements, even those that may have been near unnoticeable before, such as the presence of camouflaged animals. This process has been shown to be an effect of top-down signaling in the visual system triggered by the said cue. In this paper, we propose a mechanism to mimic the process of priming in the context of object detection and segmentation. We view priming as having a modulatory, cue dependent effect on layers of features within a network. Our results show how such a process can be complementary to, and at times more effective than simple post-processing applied to the output of the network, notably so in cases where the object is hard to detect such as in severe noise. Moreover, we find the effects of priming are sometimes stronger when early visual layers are affected. Overall, our experiments confirm that top-down signals can go a long way in improving object detection and segmentation.Comment: fixed error in author nam

    Lifting GIS Maps into Strong Geometric Context for Scene Understanding

    Full text link
    Contextual information can have a substantial impact on the performance of visual tasks such as semantic segmentation, object detection, and geometric estimation. Data stored in Geographic Information Systems (GIS) offers a rich source of contextual information that has been largely untapped by computer vision. We propose to leverage such information for scene understanding by combining GIS resources with large sets of unorganized photographs using Structure from Motion (SfM) techniques. We present a pipeline to quickly generate strong 3D geometric priors from 2D GIS data using SfM models aligned with minimal user input. Given an image resectioned against this model, we generate robust predictions of depth, surface normals, and semantic labels. We show that the precision of the predicted geometry is substantially more accurate other single-image depth estimation methods. We then demonstrate the utility of these contextual constraints for re-scoring pedestrian detections, and use these GIS contextual features alongside object detection score maps to improve a CRF-based semantic segmentation framework, boosting accuracy over baseline models
    corecore