456 research outputs found

    Semantically Resolving Type Mismatches in Scientific Workflows

    No full text
    Scientists are increasingly utilizing Grids to manage large data sets and execute scientific experiments on distributed resources. Scientific workflows are used as means for modeling and enacting scientific experiments. Windows Workflow Foundation (WF) is a major component of Microsoft’s .NET technology which offers lightweight support for long-running workflows. It provides a comfortable graphical and programmatic environment for the development of extended BPEL-style workflows. WF’s visual features ease the syntactic composition of Web services into scientific workflows but do nothing to assure that information passed between services has consistent semantic types or representations or that deviant flows, errors and compensations are handled meaningfully. In this paper we introduce SAWSDL-compliant annotations for WF and use them with a semantic reasoner to guarantee semantic type correctness in scientific workflows. Examples from bioinformatics are presented

    Resolving semantic conflicts through ontological layering

    Get PDF
    We examine the problem of semantic interoperability in modern software systems, which exhibit pervasiveness, a range of heterogeneities and in particular, semantic heterogeneity of data models which are built upon ubiquitous data repositories. We investigate whether we can build ontologies upon heterogeneous data repositories in order to resolve semantic conflicts in them, and achieve their semantic interoperability. We propose a layered software architecture, which accommodates in its core, ontological layering, resulting in a Generic ontology for Context aware, Interoperable and Data sharing (Go-CID) software applications. The software architecture supports retrievals from various data repositories and resolves semantic conflicts which arise from heterogeneities inherent in them. It allows extendibility of heterogeneous data repositories through ontological layering, whilst preserving the autonomy of their individual elements. Our specific ontological layering for interoperable data repositories is based on clearly defined reasoning mechanisms in order to perform ontology mappings. The reasoning mechanisms depend on the user‟s involvments in retrievals of and types of semantic conflicts, which we have to resolve after identifying semantically related data. Ontologies are described in terms of ontological concepts and their semantic roles that make the types of semantic conflicts explicit. We contextualise semantically related data through our own categorisation of semantic conflicts and their degrees of similarities. Our software architecture has been tested through a case study of retrievals of semantically related data across repositories in pervasive healthcare and deployed with Semantic Web technology. The extensions to the research results include the applicability of our ontological layering and reasoning mechanisms in various problem domains and in environments where we need to (i) establish if and when we have overlapping “semantics”, and (ii) infer/assert a correct set of “semantics” which can support any decision making in such domains

    Interoperability of Enterprise Software and Applications

    Get PDF

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Pristup integraciji tehničkih prostora zasnovan na preslikavanjima iinženjerstvu vođenom modelima

    Get PDF
    In order to automate development of integration adapters in industrial settings, a model-driven approach to adapter specification is devised. In this approach, a domain-specific modeling language is created to allow specification of mappings between integrated technical spaces. Also proposed is the mapping automation engine that comprises reuse and alignment algorithms. Based on mapping specifications, executable adapters are automatically generated and executed. Results of approach evaluations indicate that it is possible to use a model-driven approach to successfully integrate technical spaces and increase the automation by reusing domainspecific mappings from previously created adapters.За потребе повећања степена аутоматизације развоја адаптера за интеграцију у индустријском окружењу, осмишљен је моделом вођен приступ развоју адаптера. У оквиру овог приступа развијен је наменски језик за спецификацију пресликавања између техничких простора који су предмет интеграције. Приступ обухвата и алгоритме за поравнање и поновно искориштење претходно креираних пресликавања са циљем аутоматизације процеса спецификације. На основу креираних пресликавања, могуће je аутоматски генерисати извршиви код адаптера. У испитивањима приступа, показано је да је могуће успешно применити моделом вођен приступ у интеграцији техничких простора као и да је могуће успешно повећати степен аутоматизације поновним искоришћењем претходно креираних пресликавања.Za potrebe povećanja stepena automatizacije razvoja adaptera za integraciju u industrijskom okruženju, osmišljen je modelom vođen pristup razvoju adaptera. U okviru ovog pristupa razvijen je namenski jezik za specifikaciju preslikavanja između tehničkih prostora koji su predmet integracije. Pristup obuhvata i algoritme za poravnanje i ponovno iskorištenje prethodno kreiranih preslikavanja sa ciljem automatizacije procesa specifikacije. Na osnovu kreiranih preslikavanja, moguće je automatski generisati izvršivi kod adaptera. U ispitivanjima pristupa, pokazano je da je moguće uspešno primeniti modelom vođen pristup u integraciji tehničkih prostora kao i da je moguće uspešno povećati stepen automatizacije ponovnim iskorišćenjem prethodno kreiranih preslikavanja

    Semantic technologies: from niche to the mainstream of Web 3? A comprehensive framework for web Information modelling and semantic annotation

    Get PDF
    Context: Web information technologies developed and applied in the last decade have considerably changed the way web applications operate and have revolutionised information management and knowledge discovery. Social technologies, user-generated classification schemes and formal semantics have a far-reaching sphere of influence. They promote collective intelligence, support interoperability, enhance sustainability and instigate innovation. Contribution: The research carried out and consequent publications follow the various paradigms of semantic technologies, assess each approach, evaluate its efficiency, identify the challenges involved and propose a comprehensive framework for web information modelling and semantic annotation, which is the thesis’ original contribution to knowledge. The proposed framework assists web information modelling, facilitates semantic annotation and information retrieval, enables system interoperability and enhances information quality. Implications: Semantic technologies coupled with social media and end-user involvement can instigate innovative influence with wide organisational implications that can benefit a considerable range of industries. The scalable and sustainable business models of social computing and the collective intelligence of organisational social media can be resourcefully paired with internal research and knowledge from interoperable information repositories, back-end databases and legacy systems. Semantified information assets can free human resources so that they can be used to better serve business development, support innovation and increase productivity

    GI Systems for public health with an ontology based approach

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Health is an indispensable attribute of human life. In modern age, utilizing technologies for health is one of the emergent concepts in several applied fields. Computer science, (geographic) information systems are some of the interdisciplinary fields which motivates this thesis. Inspiring idea of the study is originated from a rhetorical disease DbHd: Database Hugging Disorder, defined by Hans Rosling at World Bank Open Data speech in May 2010. The cure of this disease can be offered as linked open data, which contains ontologies for health science, diseases, genes, drugs, GEO species etc. LOD-Linked Open Data provides the systematic application of information by publishing and connecting structured data on the Web. In the context of this study we aimed to reduce boundaries between semantic web and geo web. For this reason a use case data is studied from Valencia CSISP- Research Center of Public Health in which the mortality rates for particular diseases are represented spatio-temporally. Use case data is divided into three conceptual domains (health, spatial, statistical), enhanced with semantic relations and descriptions by following Linked Data Principles. Finally in order to convey complex health-related information, we offer an infrastructure integrating geo web and semantic web. Based on the established outcome, user access methods are introduced and future researches/studies are outlined

    Authorization schema for electronic health-care records: for Uganda

    Get PDF
    This thesis discusses how to design an authorization schema focused on ensuring each patient's data privacy within a hospital information system

    Medical Informatics

    Get PDF
    Information technology has been revolutionizing the everyday life of the common man, while medical science has been making rapid strides in understanding disease mechanisms, developing diagnostic techniques and effecting successful treatment regimen, even for those cases which would have been classified as a poor prognosis a decade earlier. The confluence of information technology and biomedicine has brought into its ambit additional dimensions of computerized databases for patient conditions, revolutionizing the way health care and patient information is recorded, processed, interpreted and utilized for improving the quality of life. This book consists of seven chapters dealing with the three primary issues of medical information acquisition from a patient's and health care professional's perspective, translational approaches from a researcher's point of view, and finally the application potential as required by the clinicians/physician. The book covers modern issues in Information Technology, Bioinformatics Methods and Clinical Applications. The chapters describe the basic process of acquisition of information in a health system, recent technological developments in biomedicine and the realistic evaluation of medical informatics

    A Two-Level Identity Model To Support Interoperability of Identity Information in Electronic Health Record Systems.

    Get PDF
    The sharing and retrieval of health information for an electronic health record (EHR) across distributed systems involves a range of identified entities that are possible subjects of documentation (e.g., specimen, clinical analyser). Contemporary EHR specifications limit the types of entities that can be the subject of a record to health professionals and patients, thus limiting the use of two level models in healthcare information systems that contribute information to the EHR. The literature describes several information modelling approaches for EHRs, including so called “two level models”. These models differ in the amount of structure imposed on the information to be recorded, but they generally require the health documentation process for the EHR to focus exclusively on the patient as the subject of care and this definition is often a fixed one. In this thesis, the author introduces a new identity modelling approach to create a generalised reference model for sharing archetype-constrained identity information between diverse identity domains, models and services, while permitting reuse of published standard-based archetypes. The author evaluates its use for expressing the major types of existing demographic reference models in an extensible way, and show its application for standards-compliant two-level modelling alongside heterogeneous demographics models. This thesis demonstrates how the two-level modelling approach that is used for EHRs could be adapted and reapplied to provide a highly-flexible and expressive means for representing subjects of information in allied health settings that support the healthcare process, such as the laboratory domain. By relying on the two level modelling approach for representing identity, the proposed design facilitates cross-referencing and disambiguation of certain demographics standards and information models. The work also demonstrates how it can also be used to represent additional clinical identified entities such as specimen and order as subjects of clinical documentation
    corecore