2,942 research outputs found

    Personalization by Partial Evaluation.

    Get PDF
    The central contribution of this paper is to model personalization by the programmatic notion of partial evaluation.Partial evaluation is a technique used to automatically specialize programs, given incomplete information about their input.The methodology presented here models a collection of information resources as a program (which abstracts the underlying schema of organization and ïŹ‚ow of information),partially evaluates the program with respect to user input,and recreates a personalized site from the specialized program.This enables a customizable methodology called PIPE that supports the automatic specialization of resources,without enumerating the interaction sequences beforehand .Issues relating to the scalability of PIPE,information integration,sessioniz-ling scenarios,and case studies are presented

    Learning space-time structures for action recognition and localization

    Get PDF
    In this thesis the problem of automatic human action recognition and localization in videos is studied. In this problem, our goal is to recognize the category of the human action that is happening in the video, and also to localize the action in space and/or time. This problem is challenging due to the complexity of the human actions, the large intra-class variations and the distraction of backgrounds. Human actions are inherently structured patterns of body movements. However, past works are inadequate in learning the space-time structures in human actions and exploring them for better recognition and localization. In this thesis new methods are proposed that exploit such space-time structures for effective human action recognition and localization in videos, including sports videos, YouTube videos, TV programs and movies. A new local space-time video representation, the hierarchical Space-Time Segments, is first proposed. Using this new video representation, ensembles of hierarchical spatio-temporal trees, discovered directly from the training videos, are constructed to model the hierarchical, spatial and temporal structures of human actions. This proposed approach achieves promising performances in action recognition and localization on challenging benchmark datasets. Moreover, the discovered trees show good cross-dataset generalizability: trees learned on one dataset can be used to recognize and localize similar actions in another dataset. To handle large scale data, a deep model is explored that learns temporal progression of the actions using Long Short Term Memory (LSTM), which is a type of Recurrent Neural Network (RNN). Two novel ranking losses are proposed to train the model to better capture the temporal structures of actions for accurate action recognition and temporal localization. This model achieves state-of-art performance on a large scale video dataset. A deep model usually employs a Convolutional Neural Network (CNN) to learn visual features from video frames. The problem of utilizing web action images for training a Convolutional Neural Network (CNN) is also studied: training CNN typically requires a large number of training videos, but the findings of this study show that web action images can be utilized as additional training data to significantly reduce the burden of video training data collection

    The Quill -- March 23, 1977

    Get PDF

    The Vectorial λ\lambda-Calculus

    Full text link
    We describe a type system for the linear-algebraic λ\lambda-calculus. The type system accounts for the linear-algebraic aspects of this extension of λ\lambda-calculus: it is able to statically describe the linear combinations of terms that will be obtained when reducing the programs. This gives rise to an original type theory where types, in the same way as terms, can be superposed into linear combinations. We prove that the resulting typed λ\lambda-calculus is strongly normalising and features weak subject reduction. Finally, we show how to naturally encode matrices and vectors in this typed calculus.Comment: Long and corrected version of arXiv:1012.4032 (EPTCS 88:1-15), to appear in Information and Computatio

    Form Explanation in Modification of Listening Input in L2 Vocabulary Learning

    Get PDF
    The effectiveness of vocabulary explanation as modifications of listening input - explicit (EE) and implicit (IE) - were investigated in contrast to unmodified (baseline, BL) condition. One hundred and nine university students from Japan listened to two texts, which included different vocabulary elaborations for 12 items. Students listened three times to each text. After each listening, they indicatec the meanings of the items. Four weeks later, a delayed posttest was administered. Positive effects of multiple listenings were found in vocabulary learning from listening input. As hypothesized, the EE condition resulted in significant superiority over the other two on the immediate posttests. However, IE was not significantly better than the BL. The findings suggested that the IE mostly remained unnoticed during the listening. On the delayed posttest, the score of EE dropped and there was no significant difference among the three conditions, though all conditions resulted in a significant increase from the pretest

    Space Station Human Factors Research Review. Volume 4: Inhouse Advanced Development and Research

    Get PDF
    A variety of human factors studies related to space station design are presented. Subjects include proximity operations and window design, spatial perceptual issues regarding displays, image management, workload research, spatial cognition, virtual interface, fault diagnosis in orbital refueling, and error tolerance and procedure aids
    • 

    corecore