7,401 research outputs found

    Optimal Cost-Preference Trade-off Planning with Multiple Temporal Tasks

    Full text link
    Autonomous robots are increasingly utilized in realistic scenarios with multiple complex tasks. In these scenarios, there may be a preferred way of completing all of the given tasks, but it is often in conflict with optimal execution. Recent work studies preference-based planning, however, they have yet to extend the notion of preference to the behavior of the robot with respect to each task. In this work, we introduce a novel notion of preference that provides a generalized framework to express preferences over individual tasks as well as their relations. Then, we perform an optimal trade-off (Pareto) analysis between behaviors that adhere to the user's preference and the ones that are resource optimal. We introduce an efficient planning framework that generates Pareto-optimal plans given user's preference by extending A* search. Further, we show a method of computing the entire Pareto front (the set of all optimal trade-offs) via an adaptation of a multi-objective A* algorithm. We also present a problem-agnostic search heuristic to enable scalability. We illustrate the power of the framework on both mobile robots and manipulators. Our benchmarks show the effectiveness of the heuristic with up to 2-orders of magnitude speedup.Comment: 8 pages, 4 figures, to appear in International Conference on Intelligent Robots and Systems (IROS) 202

    Approximate Computing Survey, Part I: Terminology and Software & Hardware Approximation Techniques

    Full text link
    The rapid growth of demanding applications in domains applying multimedia processing and machine learning has marked a new era for edge and cloud computing. These applications involve massive data and compute-intensive tasks, and thus, typical computing paradigms in embedded systems and data centers are stressed to meet the worldwide demand for high performance. Concurrently, the landscape of the semiconductor field in the last 15 years has constituted power as a first-class design concern. As a result, the community of computing systems is forced to find alternative design approaches to facilitate high-performance and/or power-efficient computing. Among the examined solutions, Approximate Computing has attracted an ever-increasing interest, with research works applying approximations across the entire traditional computing stack, i.e., at software, hardware, and architectural levels. Over the last decade, there is a plethora of approximation techniques in software (programs, frameworks, compilers, runtimes, languages), hardware (circuits, accelerators), and architectures (processors, memories). The current article is Part I of our comprehensive survey on Approximate Computing, and it reviews its motivation, terminology and principles, as well it classifies and presents the technical details of the state-of-the-art software and hardware approximation techniques.Comment: Under Review at ACM Computing Survey

    Evaluation of different segmentation-based approaches for skin disorders from dermoscopic images

    Full text link
    Treballs Finals de Grau d'Enginyeria Biomèdica. Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona. Curs: 2022-2023. Tutor/Director: Sala Llonch, Roser, Mata Miquel, Christian, Munuera, JosepSkin disorders are the most common type of cancer in the world and the incident has been lately increasing over the past decades. Even with the most complex and advanced technologies, current image acquisition systems do not permit a reliable identification of the skin lesion by visual examination due to the challenging structure of the malignancy. This promotes the need for the implementation of automatic skin lesion segmentation methods in order to assist in physicians’ diagnostic when determining the lesion's region and to serve as a preliminary step for the classification of the skin lesion. Accurate and precise segmentation is crucial for a rigorous screening and monitoring of the disease's progression. For the purpose of the commented concern, the present project aims to accomplish a state-of-the-art review about the most predominant conventional segmentation models for skin lesion segmentation, alongside with a market analysis examination. With the rise of automatic segmentation tools, a wide number of algorithms are currently being used, but many are the drawbacks when employing them for dermatological disorders due to the high-level presence of artefacts in the image acquired. In light of the above, three segmentation techniques have been selected for the completion of the work: level set method, an algorithm combining GrabCut and k-means methods and an intensity automatic algorithm developed by Hospital Sant Joan de Déu de Barcelona research group. In addition, a validation of their performance is conducted for a further implementation of them in clinical training. The proposals, together with the got outcomes, have been accomplished by means of a publicly available skin lesion image database

    Machine learning and mixed reality for smart aviation: applications and challenges

    Get PDF
    The aviation industry is a dynamic and ever-evolving sector. As technology advances and becomes more sophisticated, the aviation industry must keep up with the changing trends. While some airlines have made investments in machine learning and mixed reality technologies, the vast majority of regional airlines continue to rely on inefficient strategies and lack digital applications. This paper investigates the state-of-the-art applications that integrate machine learning and mixed reality into the aviation industry. Smart aerospace engineering design, manufacturing, testing, and services are being explored to increase operator productivity. Autonomous systems, self-service systems, and data visualization systems are being researched to enhance passenger experience. This paper investigate safety, environmental, technological, cost, security, capacity, and regulatory challenges of smart aviation, as well as potential solutions to ensure future quality, reliability, and efficiency

    ABC: Adaptive, Biomimetic, Configurable Robots for Smart Farms - From Cereal Phenotyping to Soft Fruit Harvesting

    Get PDF
    Currently, numerous factors, such as demographics, migration patterns, and economics, are leading to the critical labour shortage in low-skilled and physically demanding parts of agriculture. Thus, robotics can be developed for the agricultural sector to address these shortages. This study aims to develop an adaptive, biomimetic, and configurable modular robotics architecture that can be applied to multiple tasks (e.g., phenotyping, cutting, and picking), various crop varieties (e.g., wheat, strawberry, and tomato) and growing conditions. These robotic solutions cover the entire perception–action–decision-making loop targeting the phenotyping of cereals and harvesting fruits in a natural environment. The primary contributions of this thesis are as follows. a) A high-throughput method for imaging field-grown wheat in three dimensions, along with an accompanying unsupervised measuring method for obtaining individual wheat spike data are presented. The unsupervised method analyses the 3D point cloud of each trial plot, containing hundreds of wheat spikes, and calculates the average size of the wheat spike and total spike volume per plot. Experimental results reveal that the proposed algorithm can effectively identify spikes from wheat crops and individual spikes. b) Unlike cereal, soft fruit is typically harvested by manual selection and picking. To enable robotic harvesting, the initial perception system uses conditional generative adversarial networks to identify ripe fruits using synthetic data. To determine whether the strawberry is surrounded by obstacles, a cluster complexity-based perception system is further developed to classify the harvesting complexity of ripe strawberries. c) Once the harvest-ready fruit is localised using point cloud data generated by a stereo camera, the platform’s action system can coordinate the arm to reach/cut the stem using the passive motion paradigm framework, as inspired by studies on neural control of movement in the brain. Results from field trials for strawberry detection, reaching/cutting the stem of the fruit with a mean error of less than 3 mm, and extension to analysing complex canopy structures/bimanual coordination (searching/picking) are presented. Although this thesis focuses on strawberry harvesting, ongoing research is heading toward adapting the architecture to other crops. The agricultural food industry remains a labour-intensive sector with a low margin, and cost- and time-efficiency business model. The concepts presented herein can serve as a reference for future agricultural robots that are adaptive, biomimetic, and configurable

    Intelligent computing : the latest advances, challenges and future

    Get PDF
    Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    Artificial Intelligence-based Smarter Accessibility Evaluations for Comprehensive and Personalized Assessment

    Get PDF
    The research focuses on utilizing artificial intelligence (AI) and machine learning (ML) algorithms to enhance accessibility for people with disabilities (PwD) in three areas: public buildings, homes, and medical devices. The overarching goal is to improve the accuracy, reliability, and effectiveness of accessibility evaluation systems by leveraging smarter technologies. For public buildings, the challenge lies in developing an accurate and reliable accessibility evaluation system. AI can play a crucial role by analyzing data, identifying potential barriers, and assessing the accessibility of various features within buildings. By training ML algorithms on relevant data, the system can learn to make accurate predictions about the accessibility of different spaces and help policymakers and architects design more inclusive environments. For private places such as homes, it is essential to have a person-focused accessibility evaluation system. By utilizing machine learning-based intelligent systems, it becomes possible to assess the accessibility of individual homes based on specific needs and requirements. This personalized approach can help identify barriers and recommend modifications or assistive technologies that can enhance accessibility and independence for PwD within their own living spaces. The research also addresses the intelligent evaluation of healthcare devices in the home. Many PwD rely on medical devices for their daily living, and ensuring the accessibility and usability of these devices is crucial. AI can be employed to evaluate the accessibility features of medical devices, provide recommendations for improvement, and even measure their effectiveness in supporting the needs of PwD. Overall, this research aims to enhance the accuracy and reliability of accessibility evaluation systems by leveraging AI and ML technologies. By doing so, it seeks to improve the quality of life for individuals with disabilities by enabling increased independence, fostering social inclusion, and promoting better accessibility in public buildings, private homes, and medical devices

    Special Topics in Information Technology

    Get PDF
    This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2020-21 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists
    • …
    corecore