110,981 research outputs found

    A METHOD FOR SEMANTIC WEB SERVICE COMPOSITION BASED ON PATTERN MATCHING

    Get PDF
    The composition of semantic web services is a very important and actual problem in the semantic web services research area. There are several semi-automatic approaches for this problem, but most of the results are related to automatic approaches. In this paper we present an automatic approach for the composition of semantic web services based on pattern matching. We consider a special type of semantic description, represented as a list of semantic descriptions corresponding to several semantic web services. The semantic description related to the semantic web service that we want to obtain is decomposed until all the parts of the semantic description correspond to semantic web services from a library. In the end, all the necessary semantic web services found in the library are composed in order to obtain the semantic web service that we wanted to construct.semantic web service composition, semantic description decomposition, pattern matching

    Approaches to Semantic Web Services: An Overview and Comparison

    Get PDF
    Abstract. The next Web generation promises to deliver Semantic Web Services (SWS); services that are self-described and amenable to automated discovery, composition and invocation. A prerequisite to this, however, is the emergence and evolution of the Semantic Web, which provides the infrastructure for the semantic interoperability of Web Services. Web Services will be augmented with rich formal descriptions of their capabilities, such that they can be utilized by applications or other services without human assistance or highly constrained agreements on interfaces or protocols. Thus, Semantic Web Services have the potential to change the way knowledge and business services are consumed and provided on the Web. In this paper, we survey the state of the art of current enabling technologies for Semantic Web Services. In addition, we characterize the infrastructure of Semantic Web Services along three orthogonal dimensions: activities, architecture and service ontology. Further, we examine and contrast three current approaches to SWS according to the proposed dimensions

    Discovery and composition of web services using artificial intelligence planning and web service modeling ontology

    Get PDF
    In todayā€™s Web environment, Web services are the preferred standards-based way to realize Service Oriented Architecture (SOA) computing. A problem that has become one of the recent critical issues is automated discovery and composition of Semantic Web services. A number of approaches have been presented to solve the problem. However, most of these approaches only consider discovery or composition of Web services but not both. In this study, an effective approach called AIMO, based on Artificial Intelligence (AI) planning, Web Service Modeling Ontology (WSMO), and Semantic Web has been proposed to tackle the problem. The main purpose of this study is to investigate and develop a novel approach for automated Web service discovery and composition. In this case, a comparative evaluation of state-of-the-art approaches for Web service composition approaches has been done and the strengths and weaknesses of those approaches have been discussed. Moreover a translator for interaction between WSMO and AI-planning based on Description Logics has been proposed. In addition, some parts of AIMO architecture have been tested on a practical case study, and the results based on the experimental validation demonstrate that AIMO provides an effective and applicable solution. AIMO continues to support loose coupling paradigm of SOA by separating the discovery from the composition of Web services

    Semantic web service automation with lightweight annotations

    Get PDF
    Web services, both RESTful and WSDL-based, are an increasingly important part of the Web. With the application of semantic technologies, we can achieve automation of the use of those services. In this paper, we present WSMO-Lite and MicroWSMO, two related lightweight approaches to semantic Web service description, evolved from the WSMO framework. WSMO-Lite uses SAWSDL to annotate WSDL-based services, whereas MicroWSMO uses the hRESTS microformat to annotate RESTful APIs and services. Both frameworks share an ontology for service semantics together with most of automation algorithms

    Using semantics for automating the authentication of Web APIs

    Get PDF
    Recent technology developments in the area of services on the Web are marked by the proliferation of Web applications and APIs. The implementation and evolution of applications based on Web APIs is, however, hampered by the lack of automation that can be achieved with current technologies. Research on semantic Web services is there fore trying to adapt the principles and technologies that were devised for traditional Web services, to deal with this new kind of services. In this paper we show that currently more than 80% of the Web APIs require some form of authentication. Therefore authentication plays a major role for Web API invocation and should not be neglected in the context of mashups and composite data applications. We present a thorough analysis carried out over a body of publicly available APIs that determines the most commonly used authentication approaches. In the light of these results, we propose an ontology for the semantic annotation of Web API authentication information and demonstrate how it can be used to create semantic Web API descriptions. We evaluate the applicability of our approach by providing a prototypical implementation, which uses authentication annotations as the basis for automated service invocation

    A Framework for Semi-automated Web Service Composition in Semantic Web

    Full text link
    Number of web services available on Internet and its usage are increasing very fast. In many cases, one service is not enough to complete the business requirement; composition of web services is carried out. Autonomous composition of web services to achieve new functionality is generating considerable attention in semantic web domain. Development time and effort for new applications can be reduced with service composition. Various approaches to carry out automated composition of web services are discussed in literature. Web service composition using ontologies is one of the effective approaches. In this paper we demonstrate how the ontology based composition can be made faster for each customer. We propose a framework to provide precomposed web services to fulfil user requirements. We detail how ontology merging can be used for composition which expedites the whole process. We discuss how framework provides customer specific ontology merging and repository. We also elaborate on how merging of ontologies is carried out.Comment: 6 pages, 9 figures; CUBE 2013 International Conferenc

    Semantic annotation, publication, and discovery of Java software components: an integrated approach

    Get PDF
    Component-based software development has matured into standard practice in software engineering. Among the advantages of reusing software modules are lower costs, faster development, more manageable code, increased productivity, and improved software quality. As the number of available software components has grown, so has the need for effective component search and retrieval. Traditional search approaches, such as keyword matching, have proved ineffective when applied to software components. Applying a semantically- enhanced approach to component classification, publication, and discovery can greatly increase the efficiency of searching and retrieving software components. This has been already applied in the context of Web technologies, and Web services in particular, in the frame of Semantic Web Services research. This paper examines the similarities between software components and Web services and adapts an existing Semantic Web Service publication and discovery solution into a software component annotation and discovery tool which is implemented as an Eclipse plug-in

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web
    • ā€¦
    corecore