92,381 research outputs found

    A Collaborative System Software Solution for Modeling Business Flows Based on Automated Semantic Web Service Composition

    Get PDF
    Nowadays, business interoperability is one of the key factors for assuring competitive advantage for the participant business partners. In order to implement business cooperation, scalable, distributed and portable collaborative systems have to be implemented. This article presents some of the mostly used technologies in this field. Furthermore, it presents a software application architecture based on Business Process Modeling Notation standard and automated semantic web service coupling for modeling business flow in a collaborative manner. The main business processes will be represented in a single, hierarchic flow diagram. Each element of the diagram will represent calls to semantic web services. The business logic (the business rules and constraints) will be structured with the help of OWL (Ontology Web Language). Moreover, OWL will also be used to create the semantic web service specifications.automated service coupling, business ontology, semantic web, BPMN, semantic web

    Semantic Transformation of Web Services

    Get PDF
    Web services have become the predominant paradigm for the development of distributed software systems. Web services provide the means to modularize software in a way that functionality can be described, discovered and deployed in a platform independent manner over a network (e.g., intranets, extranets and the Internet). The representation of web services by current industrial practice is predominantly syntactic in nature lacking the fundamental semantic underpinnings required to fulfill the goals of the emerging Semantic Web. This paper proposes a framework aimed at (1) modeling the semantics of syntactically defined web services through a process of interpretation, (2) scop-ing the derived concepts within domain ontologies, and (3) harmonizing the semantic web services with the domain ontologies. The framework was vali-dated through its application to web services developed for a large financial system. The worked example presented in this paper is extracted from the se-mantic modeling of these financial web services

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    Blockchain Design and Modelling

    Get PDF
    Ontology engineering, along with semantic Web technologies, allow the semantic development and modeling of the operational flow required for blockchain design. The semantic Web, in accordance with W3C, "provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries" and can be seen as an integrator for various content, applications and information systems. The most widely used blockchain modelling system, by abstract representation, description and definition of structure, processes, information and resources, is the enterprises modelling. Enterprise modelling uses domain ontologies by model representation languages. DOI: 10.13140/RG.2.2.19062.2464

    Context-Aware Modeling Using Semantic Web and Z Notation

    Get PDF
    Surveys in user context modeling have shown that the semantic web is one of the promising approach to represent and structure the contextual information captured from user’s surrounding environment in a context-aware application. A benefit of using semantic web language is that it enables application to reason user contextual information in order to get the knowledge of user’s behavior. However, regarding its notation format, semantic web is suitable for implementation level or to be consumed by application run-time. Context-aware application is a part of distributed computing system. In distributed computing system, the language used for specification should be distinguished from the implementation / run-time purpose. This is known as separation of modeling language. Regarding the context-aware application, for those who are concerned with specification of context modeling, the language that is used for specification should also be distinguished from the implementation one. This thesis aims at proposing the use of formal specification technique to develop a generic context ontology model of user’s behavior at the Computer and Information Sciences Department, Universiti Teknologi PETRONAS. Initially, the context ontology was written in OWL semantic web language. The further process is mapping onto a formal specification language, i.e. onto Z notation. As a result, specification of context ontology and its consistency checking have been developed and verified beyond the semantic web language environment. An inconsistency of context model has been detected during the verification of Z model, which cannot be revealed by current OWL DL reasoner. The context-aware designers might benefit from the formal specification of context ontology, where the designers could fully use formal verification technique to check the correctness of context ontology. Thus, the modeling approach in this thesis has shown that it could complement the context ontology development process, where the checking and refinement are performed beyond the semantic web reasone

    Knowledge Representation with Ontologies: The Present and Future

    No full text
    Recently, we have seen an explosion of interest in ontologies as artifacts to represent human knowledge and as critical components in knowledge management, the semantic Web, business-to-business applications, and several other application areas. Various research communities commonly assume that ontologies are the appropriate modeling structure for representing knowledge. However, little discussion has occurred regarding the actual range of knowledge an ontology can successfully represent

    Application of the Financial Industry Business Ontology (FIBO) for development of a financial organization ontology

    Get PDF
    The article considers an approach to a formalized description and meaning harmonization for financial terms and means of semantic modeling. Ontologies for the semantic models are described with the help of special languages developed for the Semantic Web. Results of FIBO application to solution of different tasks in the Russian financial sector are given
    corecore