45,397 research outputs found

    An affect-based video retrieval system with open vocabulary querying

    Get PDF
    Content-based video retrieval systems (CBVR) are creating new search and browse capabilities using metadata describing significant features of the data. An often overlooked aspect of human interpretation of multimedia data is the affective dimension. Incorporating affective information into multimedia metadata can potentially enable search using this alternative interpretation of multimedia content. Recent work has described methods to automatically assign affective labels to multimedia data using various approaches. However, the subjective and imprecise nature of affective labels makes it difficult to bridge the semantic gap between system-detected labels and user expression of information requirements in multimedia retrieval. We present a novel affect-based video retrieval system incorporating an open-vocabulary query stage based on WordNet enabling search using an unrestricted query vocabulary. The system performs automatic annotation of video data with labels of well defined affective terms. In retrieval annotated documents are ranked using the standard Okapi retrieval model based on open-vocabulary text queries. We present experimental results examining the behaviour of the system for retrieval of a collection of automatically annotated feature films of different genres. Our results indicate that affective annotation can potentially provide useful augmentation to more traditional objective content description in multimedia retrieval

    Improved Video Content Indexing by Multiple Latent Semantic Analysis

    Get PDF
    Low-level features are now becoming insufficient to build efficient content-based retrieval systems. Users are not interested any longer in retrieving visually similar content, but they expect retrieval systems to also find documents with similar semantic content. Bridging the gap between low-level features and semantic content is a challenging task necessary for future retrieval systems. Latent Semantic Analysis (LSA) was successfully introduced to efficiently index text documents by detecting synonyms and the polysemy of words. We have successfully proposed an adaptation of LSA to model video content for object retrieval and semantic content estimation. Following this idea we now present a new model composed of multiple LSA's (M-LSA) to better represent the video content. In the experimental section, we make a comparison of LSA and M-LSA on two problems, namely object retrieval and semantic content estimation

    Discrete language models for video retrieval

    Get PDF
    Finding relevant video content is important for producers of television news, documentanes and commercials. As digital video collections become more widely available, content-based video retrieval tools will likely grow in importance for an even wider group of users. In this thesis we investigate language modelling approaches, that have been the focus of recent attention within the text information retrieval community, for the video search task. Language models are smoothed discrete generative probability distributions generally of text and provide a neat information retrieval formalism that we believe is equally applicable to traditional visual features as to text. We propose to model colour, edge and texture histogrambased features directly with discrete language models and this approach is compatible with further traditional visual feature representations. We provide a comprehensive and robust empirical study of smoothing methods, hierarchical semantic and physical structures, and fusion methods for this language modelling approach to video retrieval. The advantage of our approach is that it provides a consistent, effective and relatively efficient model for video retrieval

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    Highly efficient low-level feature extraction for video representation and retrieval.

    Get PDF
    PhDWitnessing the omnipresence of digital video media, the research community has raised the question of its meaningful use and management. Stored in immense multimedia databases, digital videos need to be retrieved and structured in an intelligent way, relying on the content and the rich semantics involved. Current Content Based Video Indexing and Retrieval systems face the problem of the semantic gap between the simplicity of the available visual features and the richness of user semantics. This work focuses on the issues of efficiency and scalability in video indexing and retrieval to facilitate a video representation model capable of semantic annotation. A highly efficient algorithm for temporal analysis and key-frame extraction is developed. It is based on the prediction information extracted directly from the compressed domain features and the robust scalable analysis in the temporal domain. Furthermore, a hierarchical quantisation of the colour features in the descriptor space is presented. Derived from the extracted set of low-level features, a video representation model that enables semantic annotation and contextual genre classification is designed. Results demonstrate the efficiency and robustness of the temporal analysis algorithm that runs in real time maintaining the high precision and recall of the detection task. Adaptive key-frame extraction and summarisation achieve a good overview of the visual content, while the colour quantisation algorithm efficiently creates hierarchical set of descriptors. Finally, the video representation model, supported by the genre classification algorithm, achieves excellent results in an automatic annotation system by linking the video clips with a limited lexicon of related keywords

    Semantics of video shots for content-based retrieval

    Get PDF
    Content-based video retrieval research combines expertise from many different areas, such as signal processing, machine learning, pattern recognition, and computer vision. As video extends into both the spatial and the temporal domain, we require techniques for the temporal decomposition of footage so that specific content can be accessed. This content may then be semantically classified - ideally in an automated process - to enable filtering, browsing, and searching. An important aspect that must be considered is that pictorial representation of information may be interpreted differently by individual users because it is less specific than its textual representation. In this thesis, we address several fundamental issues of content-based video retrieval for effective handling of digital footage. Temporal segmentation, the common first step in handling digital video, is the decomposition of video streams into smaller, semantically coherent entities. This is usually performed by detecting the transitions that separate single camera takes. While abrupt transitions - cuts - can be detected relatively well with existing techniques, effective detection of gradual transitions remains difficult. We present our approach to temporal video segmentation, proposing a novel algorithm that evaluates sets of frames using a relatively simple histogram feature. Our technique has been shown to range among the best existing shot segmentation algorithms in large-scale evaluations. The next step is semantic classification of each video segment to generate an index for content-based retrieval in video databases. Machine learning techniques can be applied effectively to classify video content. However, these techniques require manually classified examples for training before automatic classification of unseen content can be carried out. Manually classifying training examples is not trivial because of the implied ambiguity of visual content. We propose an unsupervised learning approach based on latent class modelling in which we obtain multiple judgements per video shot and model the users' response behaviour over a large collection of shots. This technique yields a more generic classification of the visual content. Moreover, it enables the quality assessment of the classification, and maximises the number of training examples by resolving disagreement. We apply this approach to data from a large-scale, collaborative annotation effort and present ways to improve the effectiveness for manual annotation of visual content by better design and specification of the process. Automatic speech recognition techniques along with semantic classification of video content can be used to implement video search using textual queries. This requires the application of text search techniques to video and the combination of different information sources. We explore several text-based query expansion techniques for speech-based video retrieval, and propose a fusion method to improve overall effectiveness. To combine both text and visual search approaches, we explore a fusion technique that combines spoken information and visual information using semantic keywords automatically assigned to the footage based on the visual content. The techniques that we propose help to facilitate effective content-based video retrieval and highlight the importance of considering different user interpretations of visual content. This allows better understanding of video content and a more holistic approach to multimedia retrieval in the future

    COSMOS-7: Video-oriented MPEG-7 scheme for modelling and filtering of semantic content

    Get PDF
    MPEG-7 prescribes a format for semantic content models for multimedia to ensure interoperability across a multitude of platforms and application domains. However, the standard leaves it open as to how the models should be used and how their content should be filtered. Filtering is a technique used to retrieve only content relevant to user requirements, thereby reducing the necessary content-sifting effort of the user. This paper proposes an MPEG-7 scheme that can be deployed for semantic content modelling and filtering of digital video. The proposed scheme, COSMOS-7, produces rich and multi-faceted semantic content models and supports a content-based filtering approach that only analyses content relating directly to the preferred content requirements of the user

    An MPEG-7 scheme for semantic content modelling and filtering of digital video

    Get PDF
    Abstract Part 5 of the MPEG-7 standard specifies Multimedia Description Schemes (MDS); that is, the format multimedia content models should conform to in order to ensure interoperability across multiple platforms and applications. However, the standard does not specify how the content or the associated model may be filtered. This paper proposes an MPEG-7 scheme which can be deployed for digital video content modelling and filtering. The proposed scheme, COSMOS-7, produces rich and multi-faceted semantic content models and supports a content-based filtering approach that only analyses content relating directly to the preferred content requirements of the user. We present details of the scheme, front-end systems used for content modelling and filtering and experiences with a number of users
    • 

    corecore