42,366 research outputs found

    The Semantic Music Player: A Smart Mobile Player Based on Ontological Structures and Analytical Feature Metadata

    Get PDF
    Presented at the 2nd Web Audio Conference (WAC), April 4-6, 2016, Atlanta, Georgia.The Semantic Music Player is a cross-platform web and mobile app built with Ionic and the Web Audio API that explores new ways of playing back music on mobile devices, particularly indeterministic, context-dependent, and interactive ways. It is based on Dynamic Music Objects, a format that represents musical content and structure in an abstract way and makes it modifiable within definable constraints. For each Dynamic Music Object, the Semantic Music Player generates a custom graphical interface and enables appropriate user interface controls and mobile sensors based on its requirements. When the object is played back, the player takes spontaneous decisions based on the given structural information and the analytical data and reacts to sensor and user interface inputs. In this paper, we introduce the player and its underlying concepts and give some examples of the potentially infinite amount of use cases and musical results

    Requirements for an Adaptive Multimedia Presentation System with Contextual Supplemental Support Media

    Get PDF
    Investigations into the requirements for a practical adaptive multimedia presentation system have led the writers to propose the use of a video segmentation process that provides contextual supplementary updates produced by users. Supplements consisting of tailored segments are dynamically inserted into previously stored material in response to questions from users. A proposal for the use of this technique is presented in the context of personalisation within a Virtual Learning Environment. During the investigation, a brief survey of advanced adaptive approaches revealed that adaptation may be enhanced by use of manually generated metadata, automated or semi-automated use of metadata by stored context dependent ontology hierarchies that describe the semantics of the learning domain. The use of neural networks or fuzzy logic filtering is a technique for future investigation. A prototype demonstrator is under construction

    Interaction Issues in Computer Aided Semantic\ud Annotation of Multimedia

    Get PDF
    The CASAM project aims to provide a tool for more efficient and effective annotation of multimedia documents through collaboration between a user and a system performing an automated analysis of the media content. A critical part of the project is to develop a user interface which best supports both the user and the system through optimal human-computer interaction. In this paper we discuss the work undertaken, the proposed user interface and underlying interaction issues which drove its development

    A grammatical specification of human-computer dialogue

    Get PDF
    The Seeheim Model of human-computer interaction partitions an interactive application into a user-interface, a dialogue controller and the application itself. One of the formal techniques of implementing the dialogue controller is based on context-free grammars and automata. In this work, we modify an off-the-shelf compiler generator (YACC) to generate the dialogue controller. The dialogue controller is then integrated into the popular X-window system, to create an interactive-application generator. The actions of the user drive the automaton, which in turn controls the application

    DBpedia's triple pattern fragments: usage patterns and insights

    Get PDF
    Queryable Linked Data is published through several interfaces, including SPARQL endpoints and Linked Data documents. In October 2014, the DBpedia Association announced an official Triple Pattern Fragments interface to its popular DBpedia dataset. This interface proposes to improve the availability of live queryable data by dividing query execution between clients and servers. In this paper, we present a usage analysis between November 2014 and July 2015. In 9 months time, the interface had an average availability of 99.99 %, handling 16,776,170 requests, 43.0% of which were served from cache. These numbers provide promising evidence that low-cost Triple Pattern Fragments interfaces provide a viable strategy for live applications on top of public, queryable datasets

    Substring filtering for low-cost linked data interfaces

    Get PDF
    Recently, Triple Pattern Fragments (TPFS) were introduced as a low-cost server-side interface when high numbers of clients need to evaluate SPARQL queries. Scalability is achieved by moving part of the query execution to the client, at the cost of elevated query times. Since the TPFS interface purposely does not support complex constructs such as SPARQL filters, queries that use them need to be executed mostly on the client, resulting in long execution times. We therefore investigated the impact of adding a literal substring matching feature to the TPFS interface, with the goal of improving query performance while maintaining low server cost. In this paper, we discuss the client/server setup and compare the performance of SPARQL queries on multiple implementations, including Elastic Search and case-insensitive FM-index. Our evaluations indicate that these improvements allow for faster query execution without significantly increasing the load on the server. Offering the substring feature on TPF servers allows users to obtain faster responses for filter-based SPARQL queries. Furthermore, substring matching can be used to support other filters such as complete regular expressions or range queries

    Opportunistic linked data querying through approximate membership metadata

    Get PDF
    Between URI dereferencing and the SPARQL protocol lies a largely unexplored axis of possible interfaces to Linked Data, each with its own combination of trade-offs. One of these interfaces is Triple Pattern Fragments, which allows clients to execute SPARQL queries against low-cost servers, at the cost of higher bandwidth. Increasing a client's efficiency means lowering the number of requests, which can among others be achieved through additional metadata in responses. We noted that typical SPARQL query evaluations against Triple Pattern Fragments require a significant portion of membership subqueries, which check the presence of a specific triple, rather than a variable pattern. This paper studies the impact of providing approximate membership functions, i.e., Bloom filters and Golomb-coded sets, as extra metadata. In addition to reducing HTTP requests, such functions allow to achieve full result recall earlier when temporarily allowing lower precision. Half of the tested queries from a WatDiv benchmark test set could be executed with up to a third fewer HTTP requests with only marginally higher server cost. Query times, however, did not improve, likely due to slower metadata generation and transfer. This indicates that approximate membership functions can partly improve the client-side query process with minimal impact on the server and its interface
    • …
    corecore