13 research outputs found

    Exploiting general-purpose background knowledge for automated schema matching

    Full text link
    The schema matching task is an integral part of the data integration process. It is usually the first step in integrating data. Schema matching is typically very complex and time-consuming. It is, therefore, to the largest part, carried out by humans. One reason for the low amount of automation is the fact that schemas are often defined with deep background knowledge that is not itself present within the schemas. Overcoming the problem of missing background knowledge is a core challenge in automating the data integration process. In this dissertation, the task of matching semantic models, so-called ontologies, with the help of external background knowledge is investigated in-depth in Part I. Throughout this thesis, the focus lies on large, general-purpose resources since domain-specific resources are rarely available for most domains. Besides new knowledge resources, this thesis also explores new strategies to exploit such resources. A technical base for the development and comparison of matching systems is presented in Part II. The framework introduced here allows for simple and modularized matcher development (with background knowledge sources) and for extensive evaluations of matching systems. One of the largest structured sources for general-purpose background knowledge are knowledge graphs which have grown significantly in size in recent years. However, exploiting such graphs is not trivial. In Part III, knowledge graph em- beddings are explored, analyzed, and compared. Multiple improvements to existing approaches are presented. In Part IV, numerous concrete matching systems which exploit general-purpose background knowledge are presented. Furthermore, exploitation strategies and resources are analyzed and compared. This dissertation closes with a perspective on real-world applications

    Knowledge Extraction for Hybrid Question Answering

    Get PDF
    Since the proposal of hypertext by Tim Berners-Lee to his employer CERN on March 12, 1989 the World Wide Web has grown to more than one billion Web pages and still grows. With the later proposed Semantic Web vision,Berners-Lee et al. suggested an extension of the existing (Document) Web to allow better reuse, sharing and understanding of data. Both the Document Web and the Web of Data (which is the current implementation of the Semantic Web) grow continuously. This is a mixed blessing, as the two forms of the Web grow concurrently and most commonly contain different pieces of information. Modern information systems must thus bridge a Semantic Gap to allow a holistic and unified access to information about a particular information independent of the representation of the data. One way to bridge the gap between the two forms of the Web is the extraction of structured data, i.e., RDF, from the growing amount of unstructured and semi-structured information (e.g., tables and XML) on the Document Web. Note, that unstructured data stands for any type of textual information like news, blogs or tweets. While extracting structured data from unstructured data allows the development of powerful information system, it requires high-quality and scalable knowledge extraction frameworks to lead to useful results. The dire need for such approaches has led to the development of a multitude of annotation frameworks and tools. However, most of these approaches are not evaluated on the same datasets or using the same measures. The resulting Evaluation Gap needs to be tackled by a concise evaluation framework to foster fine-grained and uniform evaluations of annotation tools and frameworks over any knowledge bases. Moreover, with the constant growth of data and the ongoing decentralization of knowledge, intuitive ways for non-experts to access the generated data are required. Humans adapted their search behavior to current Web data by access paradigms such as keyword search so as to retrieve high-quality results. Hence, most Web users only expect Web documents in return. However, humans think and most commonly express their information needs in their natural language rather than using keyword phrases. Answering complex information needs often requires the combination of knowledge from various, differently structured data sources. Thus, we observe an Information Gap between natural-language questions and current keyword-based search paradigms, which in addition do not make use of the available structured and unstructured data sources. Question Answering (QA) systems provide an easy and efficient way to bridge this gap by allowing to query data via natural language, thus reducing (1) a possible loss of precision and (2) potential loss of time while reformulating the search intention to transform it into a machine-readable way. Furthermore, QA systems enable answering natural language queries with concise results instead of links to verbose Web documents. Additionally, they allow as well as encourage the access to and the combination of knowledge from heterogeneous knowledge bases (KBs) within one answer. Consequently, three main research gaps are considered and addressed in this work: First, addressing the Semantic Gap between the unstructured Document Web and the Semantic Gap requires the development of scalable and accurate approaches for the extraction of structured data in RDF. This research challenge is addressed by several approaches within this thesis. This thesis presents CETUS, an approach for recognizing entity types to populate RDF KBs. Furthermore, our knowledge base-agnostic disambiguation framework AGDISTIS can efficiently detect the correct URIs for a given set of named entities. Additionally, we introduce REX, a Web-scale framework for RDF extraction from semi-structured (i.e., templated) websites which makes use of the semantics of the reference knowledge based to check the extracted data. The ongoing research on closing the Semantic Gap has already yielded a large number of annotation tools and frameworks. However, these approaches are currently still hard to compare since the published evaluation results are calculated on diverse datasets and evaluated based on different measures. On the other hand, the issue of comparability of results is not to be regarded as being intrinsic to the annotation task. Indeed, it is now well established that scientists spend between 60% and 80% of their time preparing data for experiments. Data preparation being such a tedious problem in the annotation domain is mostly due to the different formats of the gold standards as well as the different data representations across reference datasets. We tackle the resulting Evaluation Gap in two ways: First, we introduce a collection of three novel datasets, dubbed N3, to leverage the possibility of optimizing NER and NED algorithms via Linked Data and to ensure a maximal interoperability to overcome the need for corpus-specific parsers. Second, we present GERBIL, an evaluation framework for semantic entity annotation. The rationale behind our framework is to provide developers, end users and researchers with easy-to-use interfaces that allow for the agile, fine-grained and uniform evaluation of annotation tools and frameworks on multiple datasets. The decentral architecture behind the Web has led to pieces of information being distributed across data sources with varying structure. Moreover, the increasing the demand for natural-language interfaces as depicted by current mobile applications requires systems to deeply understand the underlying user information need. In conclusion, the natural language interface for asking questions requires a hybrid approach to data usage, i.e., simultaneously performing a search on full-texts and semantic knowledge bases. To close the Information Gap, this thesis presents HAWK, a novel entity search approach developed for hybrid QA based on combining structured RDF and unstructured full-text data sources

    A hybrid approach for item collection recommendations : an application to automatic playlist continuation

    Get PDF
    Current recommender systems aim mainly to generate accurate item recommendations, without properly evaluating the multiple dimensions of the recommendation problem. However, in many domains, like in music, where items are rarely consumed in isolation, users would rather need a set of items, designed to work well together, while having some cognitive properties as a whole, related to their perception of quality and satisfaction. In this thesis, a hybrid case-based recommendation approach for item collections is proposed. In particular, an application to automatic playlist continuation, addressing similar cognitive concepts, rather than similar users, is presented. Playlists, that are sets of music items designed to be consumed as a sequence, with a specific purpose and within a specific context, are treated as cases. The proposed recommender system is based on a meta-level hybridization. First, Latent Dirichlet Allocation is applied to the set of past playlists, described as distributions over music styles, to identify their underlying concepts. Then, for a started playlist, its semantic characteristics, like its latent concept and the styles of the included items, are inferred, and Case-Based Reasoning is applied to the set of past playlists addressing the same concept, to construct and recommend a relevant playlist continuation. A graph-based item model is used to overcome the semantic gap between songs’ signal-based descriptions and users’ high-level preferences, efficiently capture the playlists’ structures and the similarity of the music items in those. As the proposed method bases its reasoning on previous playlists, it does not require the construction of complex user profiles to generate accurate recommendations. Furthermore, apart from relevance, support to parameters beyond accuracy, like increased coherence or support to diverse items is provided to deliver a more complete user experience. Experiments on real music datasets have revealed improved results, compared to other state of the art techniques, while achieving a “good trade-off” between recommendations’ relevance, diversity and coherence. Finally, although actually focusing on playlist continuations, the designed approach could be easily adapted to serve other recommendation domains with similar characteristics.Los sistemas de recomendación actuales tienen como objetivo principal generar recomendaciones precisas de artículos, sin evaluar propiamente las múltiples dimensiones del problema de recomendación. Sin embargo, en dominios como la música, donde los artículos rara vez se consumen en forma aislada, los usuarios más bien necesitarían recibir recomendaciones de conjuntos de elementos, diseñados para que se complementaran bien juntos, mientras se cubran algunas propiedades cognitivas, relacionadas con su percepción de calidad y satisfacción. En esta tesis, se propone un sistema híbrido de recomendación meta-nivel, que genera recomendaciones de colecciones de artículos. En particular, el sistema se centra en la generación automática de continuaciones de listas de música, tratando conceptos cognitivos similares, en lugar de usuarios similares. Las listas de reproducción son conjuntos de elementos musicales diseñados para ser consumidos en secuencia, con un propósito específico y dentro de un contexto específico. El sistema propuesto primero aplica el método de Latent Dirichlet Allocation a las listas de reproducción, que se describen como distribuciones sobre estilos musicales, para identificar sus conceptos. Cuando se ha iniciado una nueva lista, se deducen sus características semánticas, como su concepto y los estilos de los elementos incluidos en ella. A continuación, el sistema aplica razonamiento basado en casos, utilizando las listas del mismo concepto, para construir y recomendar una continuación relevante. Se utiliza un grafo que modeliza las relaciones de los elementos, para superar el ?salto semántico? existente entre las descripciones de las canciones, normalmente basadas en características sonoras, y las preferencias de los usuarios, expresadas en características de alto nivel. También se utiliza para calcular la similitud de los elementos musicales y para capturar la estructura de las listas de dichos elementos. Como el método propuesto basa su razonamiento en las listas de reproducción y no en usuarios que las construyeron, no se requiere la construcción de perfiles de usuarios complejos para poder generar recomendaciones precisas. Aparte de la relevancia de las recomendaciones, el sistema tiene en cuenta parámetros más allá de la precisión, como mayor coherencia o soporte a la diversidad de los elementos para enriquecer la experiencia del usuario. Los experimentos realizados en bases de datos reales, han revelado mejores resultados, en comparación con las técnicas utilizadas normalmente. Al mismo tiempo, el algoritmo propuesto logra un "buen equilibrio" entre la relevancia, la diversidad y la coherencia de las recomendaciones generadas. Finalmente, aunque la metodología presentada se centra en la recomendación de continuaciones de listas de reproducción musical, el sistema se puede adaptar fácilmente a otros dominios con características similares.Postprint (published version

    Enhancing curriculum design and delivery with OER

    Get PDF
    This paper reports on the key findings from the EVOL-OER project which aims to develop a deeper understanding of the reuse of open educational resources (OERs) by academics in Higher Education Institutions (HEIs). This paper builds on the JISC OER Impact study by exploring and expanding on the Ratified quadrant of the study’s landscape of reuse framework (White & Manton, 2011). This paper puts forward a different four-quadrant diagram called ‘OER-enhanced curriculum’ to illustrate different approaches adopted by academics to embedding OER into curriculum design and delivery. Key issues in relation to motivation and challenges in reusing OER are discussed

    Social informatics

    Get PDF
    5th International Conference, SocInfo 2013, Kyoto, Japan, November 25-27, 2013, Proceedings</p

    Enhancing Recommendations in Specialist Search Through Semantic-based Techniques and Multiple Resources

    Get PDF
    Information resources abound on the Internet, but mining these resources is a non-trivial task. Such abundance has raised the need to enhance services provided to users, such as recommendations. The purpose of this work is to explore how better recommendations can be provided to specialists in specific domains such as bioinformatics by introducing semantic techniques that reason through different resources and using specialist search techniques. Such techniques exploit semantic relations and hidden associations that occur as a result of the information overlapping among various concepts in multiple bioinformatics resources such as ontologies, websites and corpora. Thus, this work introduces a new method that reasons over different bioinformatics resources and then discovers and exploits different relations and information that may not exist in the original resources. Such relations may be discovered as a consequence of the information overlapping, such as the sibling and semantic similarity relations, to enhance the accuracy of the recommendations provided on bioinformatics content (e.g. articles). In addition, this research introduces a set of semantic rules that are able to extract different semantic information and relations inferred among various bioinformatics resources. This project introduces these semantic-based methods as part of a recommendation service within a content-based system. Moreover, it uses specialists' interests to enhance the provided recommendations by employing a method that is collecting user data implicitly. Then, it represents the data as adaptive ontological user profiles for each user based on his/her preferences, which contributes to more accurate recommendations provided to each specialist in the field of bioinformatics

    Друга міжнародна конференція зі сталого майбутнього: екологічні, технологічні, соціальні та економічні питання (ICSF 2021). Кривий Ріг, Україна, 19-21 травня 2021 року

    Get PDF
    Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021). Kryvyi Rih, Ukraine, May 19-21, 2021.Друга міжнародна конференція зі сталого майбутнього: екологічні, технологічні, соціальні та економічні питання (ICSF 2021). Кривий Ріг, Україна, 19-21 травня 2021 року

    Discussing writing:peer feedback on writing essays in an online forum for learners of English

    Get PDF
    This case study investigated feedback, interaction, and knowledge creation in an asynchronous discussion forum in which learners of English provided peer feedback on short argument essays for the IELTS test, a gatekeeper English exam used for immigration or university entrance. Over eleven months, a small but active group of intermediate and advanced learners from many countries changed participation from seeking feedback to giving complex macro-level feedback on each other’s writing, changing their perceptions of peer editing and improving their own writing, while a much larger group engaged primarily in lurking. The research was exploratory at first, since it was not known whether learners would join or provide feedback, but as members joined, peer feedback loops and varying patterns of interaction emerged. To investigate these processes, both content and structure were examined, with forum posts examined using thematic units as the unit of analysis, and server logs providing structural data such as membership duration and posting patterns. Semi-structured interviews were carried out to gain further insight into member perceptions. Feedback was viewed as a process with benefits for both givers and receivers, rather than as a product given by an expert. Lurking was a key form of participation for both active and less-active members, while changes in roles and participation were mainly associated with longer membership and more feedback. Because of the informal learning setting and high turnover, models from outside educational settings were used as theoretical lenses: organizational citizenship (Bateman & Organ, 1983) and organizational commitment (Meyer & Allen, 1991), to investigate roles and behavior; and Nonaka’s SECI framework (1994), to examine knowledge conversion and creation. Applying citizenship behavior to online settings posed problems due to the difficulty of distinguishing between discretionary or supra-role behavior and the core intent of a knowledge community. In contrast, a modified SECI framework appeared to be a useful metaphor, emphasizing peer feedback as socially-constructed knowledge
    corecore