137 research outputs found

    Adversarial Propagation and Zero-Shot Cross-Lingual Transfer of Word Vector Specialization

    Get PDF
    Semantic specialization is the process of fine-tuning pre-trained distributional word vectors using external lexical knowledge (e.g., WordNet) to accentuate a particular semantic relation in the specialized vector space. While post-processing specialization methods are applicable to arbitrary distributional vectors, they are limited to updating only the vectors of words occurring in external lexicons (i.e., seen words), leaving the vectors of all other words unchanged. We propose a novel approach to specializing the full distributional vocabulary. Our adversarial post-specialization method propagates the external lexical knowledge to the full distributional space. We exploit words seen in the resources as training examples for learning a global specialization function. This function is learned by combining a standard L2-distance loss with an adversarial loss: the adversarial component produces more realistic output vectors. We show the effectiveness and robustness of the proposed method across three languages and on three tasks: word similarity, dialog state tracking, and lexical simplification. We report consistent improvements over distributional word vectors and vectors specialized by other state-of-the-art specialization frameworks. Finally, we also propose a cross-lingual transfer method for zero-shot specialization which successfully specializes a full target distributional space without any lexical knowledge in the target language and without any bilingual data.Comment: Accepted at EMNLP 201

    Enhancing Word Embeddings with Knowledge Extracted from Lexical Resources

    Get PDF
    In this work, we present an effective method for semantic specialization of word vector representations. To this end, we use traditional word embeddings and apply specialization methods to better capture semantic relations between words. In our approach, we leverage external knowledge from rich lexical resources such as BabelNet. We also show that our proposed post-specialization method based on an adversarial neural network with the Wasserstein distance allows to gain improvements over state-of-the-art methods on two tasks: word similarity and dialog state tracking.Comment: Accepted to ACL 2020 SR

    BabelBERT: Massively Multilingual Transformers Meet a Massively Multilingual Lexical Resource

    Full text link
    While pretrained language models (PLMs) primarily serve as general purpose text encoders that can be fine-tuned for a wide variety of downstream tasks, recent work has shown that they can also be rewired to produce high-quality word representations (i.e., static word embeddings) and yield good performance in type-level lexical tasks. While existing work primarily focused on lexical specialization of PLMs in monolingual and bilingual settings, in this work we expose massively multilingual transformers (MMTs, e.g., mBERT or XLM-R) to multilingual lexical knowledge at scale, leveraging BabelNet as the readily available rich source of multilingual and cross-lingual type-level lexical knowledge. Concretely, we leverage BabelNet's multilingual synsets to create synonym pairs across 5050 languages and then subject the MMTs (mBERT and XLM-R) to a lexical specialization procedure guided by a contrastive objective. We show that such massively multilingual lexical specialization brings massive gains in two standard cross-lingual lexical tasks, bilingual lexicon induction and cross-lingual word similarity, as well as in cross-lingual sentence retrieval. Crucially, we observe gains for languages unseen in specialization, indicating that the multilingual lexical specialization enables generalization to languages with no lexical constraints. In a series of subsequent controlled experiments, we demonstrate that the pretraining quality of word representations in the MMT for languages involved in specialization has a much larger effect on performance than the linguistic diversity of the set of constraints. Encouragingly, this suggests that lexical tasks involving low-resource languages benefit the most from lexical knowledge of resource-rich languages, generally much more available

    Specializing distributional vectors of allwords for lexical entailment

    Get PDF
    Semantic specialization methods fine-tune distributional word vectors using lexical knowledge from external resources (e.g., WordNet) to accentuate a particular relation between words. However, such post-processing methods suffer from limited coverage as they affect only vectors of words seen in the external resources. We present the first postprocessing method that specializes vectors of all vocabulary words – including those unseen in the resources – for the asymmetric relation of lexical entailment (LE) (i.e., hyponymyhypernymy relation). Leveraging a partially LE-specialized distributional space, our POSTLE (i.e., post-specialization for LE) model learns an explicit global specialization function, allowing for specialization of vectors of unseen words, as well as word vectors from other languages via cross-lingual transfer. We capture the function as a deep feedforward neural network: its objective re-scales vector norms to reflect the concept hierarchy while simultaneously attracting hyponymyhypernymy pairs to better reflect semantic similarity. An extended model variant augments the basic architecture with an adversarial discriminator. We demonstrate the usefulness and versatility of POSTLE models with different input distributional spaces in different scenarios (monolingual LE and zero-shot cross-lingual LE transfer) and tasks (binary and graded LE). We report consistent gains over state-of-the-art LE-specialization methods, and successfully LE-specialize word vectors for languages without any external lexical knowledge

    Semantic Specialisation of Distributional Word Vector Spaces using Monolingual and Cross-Lingual Constraints

    Get PDF
    We present Attract-Repel, an algorithm for improving the semantic quality of word vectors by injecting constraints extracted from lexical resources. Attract-Repel facilitates the use of constraints from mono- and cross-lingual resources, yielding semantically specialised cross-lingual vector spaces. Our evaluation shows that the method can make use of existing cross-lingual lexicons to construct high-quality vector spaces for a plethora of different languages, facilitating semantic transfer from high- to lower-resource ones. The effectiveness of our approach is demonstrated with state-of-the-art results on semantic similarity datasets in six languages. We next show that Attract-Repel-specialised vectors boost performance in the downstream task of dialogue state tracking (DST) across multiple languages. Finally, we show that cross-lingual vector spaces produced by our algorithm facilitate the training of multilingual DST models, which brings further performance improvements.Ivan Vulic, Roi Reichart and Anna Korhonen are supported by the ERC Consolidator Grant LEXICAL (number 648909). Roi Reichart is also supported by the Intel-ICRI grant: Hybrid Models for Minimally Supervised Information Extraction from Conversations

    Analogy Training Multilingual Encoders

    Get PDF
    Language encoders encode words and phrases in ways that capture their local semantic relatedness, but are known to be globally inconsistent. Global inconsistency can seemingly be corrected for, in part, by leveraging signals from knowledge bases, but previous results are partial and limited to monolingual English encoders. We extract a large-scale multilingual, multi-word analogy dataset from Wikidata for diagnosing and correcting for global inconsistencies and implement a four-way Siamese BERT architecture for grounding multilingual BERT (mBERT) in Wikidata through analogy training. We show that analogy training not only improves the global consistency of mBERT, as well as the isomorphism of language-specific subspaces, but also leads to significant gains on downstream tasks such as bilingual dictionary induction and sentence retrieval

    Discriminating between lexico-semantic relations with the specialization tensor model

    Get PDF
    We present a simple and effective feed-forward neural architecture for discriminating between lexico-semantic relations (synonymy, antonymy, hypernymy, and meronymy). Our Specialization Tensor Model (STM) simultaneously produces multiple different specializations of input distributional word vectors, tailored for predicting lexico-semantic relations for word pairs. STM outperforms more complex state-of-the-art architectures on two benchmark datasets and exhibits stable performance across languages. We also show that, if coupled with a lingual distributional space, the proposed model can transfer the prediction of lexico-semantic relations to a resource-lean target language without any training data
    • …
    corecore