834 research outputs found

    Computational and human-based methods for knowledge discovery over knowledge graphs

    Get PDF
    The modern world has evolved, accompanied by the huge exploitation of data and information. Daily, increasing volumes of data from various sources and formats are stored, resulting in a challenging strategy to manage and integrate them to discover new knowledge. The appropriate use of data in various sectors of society, such as education, healthcare, e-commerce, and industry, provides advantages for decision support in these areas. However, knowledge discovery becomes challenging since data may come from heterogeneous sources with important information hidden. Thus, new approaches that adapt to the new challenges of knowledge discovery in such heterogeneous data environments are required. The semantic web and knowledge graphs (KGs) are becoming increasingly relevant on the road to knowledge discovery. This thesis tackles the problem of knowledge discovery over KGs built from heterogeneous data sources. We provide a neuro-symbolic artificial intelligence system that integrates symbolic and sub-symbolic frameworks to exploit the semantics encoded in a KG and its structure. The symbolic system relies on existing approaches of deductive databases to make explicit, implicit knowledge encoded in a KG. The proposed deductive database DSDS can derive new statements to ego networks given an abstract target prediction. Thus, DSDS minimizes data sparsity in KGs. In addition, a sub-symbolic system relies on knowledge graph embedding (KGE) models. KGE models are commonly applied in the KG completion task to represent entities in a KG in a low-dimensional vector space. However, KGE models are known to suffer from data sparsity, and a symbolic system assists in overcoming this fact. The proposed approach discovers knowledge given a target prediction in a KG and extracts unknown implicit information related to the target prediction. As a proof of concept, we have implemented the neuro-symbolic system on top of a KG for lung cancer to predict polypharmacy treatment effectiveness. The symbolic system implements a deductive system to deduce pharmacokinetic drug-drug interactions encoded in a set of rules through the Datalog program. Additionally, the sub-symbolic system predicts treatment effectiveness using a KGE model, which preserves the KG structure. An ablation study on the components of our approach is conducted, considering state-of-the-art KGE methods. The observed results provide evidence for the benefits of the neuro-symbolic integration of our approach, where the neuro-symbolic system for an abstract target prediction exhibits improved results. The enhancement of the results occurs because the symbolic system increases the prediction capacity of the sub-symbolic system. Moreover, the proposed neuro-symbolic artificial intelligence system in Industry 4.0 (I4.0) is evaluated, demonstrating its effectiveness in determining relatedness among standards and analyzing their properties to detect unknown relations in the I4.0KG. The results achieved allow us to conclude that the proposed neuro-symbolic approach for an abstract target prediction improves the prediction capability of KGE models by minimizing data sparsity in KGs

    Neurosymbolic AI for Reasoning on Graph Structures: A Survey

    Full text link
    Neurosymbolic AI is an increasingly active area of research which aims to combine symbolic reasoning methods with deep learning to generate models with both high predictive performance and some degree of human-level comprehensibility. As knowledge graphs are becoming a popular way to represent heterogeneous and multi-relational data, methods for reasoning on graph structures have attempted to follow this neurosymbolic paradigm. Traditionally, such approaches have utilized either rule-based inference or generated representative numerical embeddings from which patterns could be extracted. However, several recent studies have attempted to bridge this dichotomy in ways that facilitate interpretability, maintain performance, and integrate expert knowledge. Within this article, we survey a breadth of methods that perform neurosymbolic reasoning tasks on graph structures. To better compare the various methods, we propose a novel taxonomy by which we can classify them. Specifically, we propose three major categories: (1) logically-informed embedding approaches, (2) embedding approaches with logical constraints, and (3) rule-learning approaches. Alongside the taxonomy, we provide a tabular overview of the approaches and links to their source code, if available, for more direct comparison. Finally, we discuss the applications on which these methods were primarily used and propose several prospective directions toward which this new field of research could evolve.Comment: 21 pages, 8 figures, 1 table, currently under review. Corresponding GitHub page here: https://github.com/NeSymGraph

    Heterogeneous Multi-Layered Network Model for Omics Data Integration and Analysis

    Get PDF
    Advances in next-generation sequencing and high-throughput techniques have enabled the generation of vast amounts of diverse omics data. These big data provide an unprecedented opportunity in biology, but impose great challenges in data integration, data mining, and knowledge discovery due to the complexity, heterogeneity, dynamics, uncertainty, and high-dimensionality inherited in the omics data. Network has been widely used to represent relations between entities in biological system, such as protein-protein interaction, gene regulation, and brain connectivity (i.e. network construction) as well as to infer novel relations given a reconstructed network (aka link prediction). Particularly, heterogeneous multi-layered network (HMLN) has proven successful in integrating diverse biological data for the representation of the hierarchy of biological system. The HMLN provides unparalleled opportunities but imposes new computational challenges on establishing causal genotype-phenotype associations and understanding environmental impact on organisms. In this review, we focus on the recent advances in developing novel computational methods for the inference of novel biological relations from the HMLN. We first discuss the properties of biological HMLN. Then we survey four categories of state-of-the-art methods (matrix factorization, random walk, knowledge graph, and deep learning). Thirdly, we demonstrate their applications to omics data integration and analysis. Finally, we outline strategies for future directions in the development of new HMLN models

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Applications of Data Mining in Healthcare

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)With increases in the quantity and quality of healthcare related data, data mining tools have the potential to improve people’s standard of living through personalized and predictive medicine. In this thesis we improve the state-of-the-art in data mining for several problems in the healthcare domain. In problems such as drug-drug interaction prediction and Alzheimer’s Disease (AD) biomarkers discovery and prioritization, current methods either require tedious feature engineering or have unsatisfactory performance. New effective computational tools are needed that can tackle these complex problems. In this dissertation, we develop new algorithms for two healthcare problems: high-order drug-drug interaction prediction and amyloid imaging biomarker prioritization in Alzheimer’s Disease. Drug-drug interactions (DDIs) and their associated adverse drug reactions (ADRs) represent a significant detriment to the public h ealth. Existing research on DDIs primarily focuses on pairwise DDI detection and prediction. Effective computational methods for high-order DDI prediction are desired. In this dissertation, I present a deep learning based model D 3 I for cardinality-invariant and order-invariant high-order DDI pre- diction. The proposed models achieve 0.740 F1 value and 0.847 AUC value on high-order DDI prediction, and outperform classical methods on order-2 DDI prediction. These results demonstrate the strong potential of D 3 I and deep learning based models in tackling the prediction problems of high-order DDIs and their induced ADRs. The second problem I consider in this thesis is amyloid imaging biomarkers discovery, for which I propose an innovative machine learning paradigm enabling precision medicine in this domain. The paradigm tailors the imaging biomarker discovery process to individual characteristics of a given patient. I implement this paradigm using a newly developed learning-to-rank method PLTR. The PLTR model seamlessly integrates two objectives for joint optimization: pushing up relevant biomarkers and ranking among relevant biomarkers. The empirical study of PLTR conducted on the ADNI data yields promising results to identify and prioritize individual-specific amyloid imaging biomarkers based on the individual’s structural MRI data. The resulting top ranked imaging biomarkers have the potential to aid personalized diagnosis and disease subtyping

    Machine Learning Applications for Drug Repurposing

    Full text link
    The cost of bringing a drug to market is astounding and the failure rate is intimidating. Drug discovery has been of limited success under the conventional reductionist model of one-drug-one-gene-one-disease paradigm, where a single disease-associated gene is identified and a molecular binder to the specific target is subsequently designed. Under the simplistic paradigm of drug discovery, a drug molecule is assumed to interact only with the intended on-target. However, small molecular drugs often interact with multiple targets, and those off-target interactions are not considered under the conventional paradigm. As a result, drug-induced side effects and adverse reactions are often neglected until a very late stage of the drug discovery, where the discovery of drug-induced side effects and potential drug resistance can decrease the value of the drug and even completely invalidate the use of the drug. Thus, a new paradigm in drug discovery is needed. Structural systems pharmacology is a new paradigm in drug discovery that the drug activities are studied by data-driven large-scale models with considerations of the structures and drugs. Structural systems pharmacology will model, on a genome scale, the energetic and dynamic modifications of protein targets by drug molecules as well as the subsequent collective effects of drug-target interactions on the phenotypic drug responses. To date, however, few experimental and computational methods can determine genome-wide protein-ligand interaction networks and the clinical outcomes mediated by them. As a result, the majority of proteins have not been charted for their small molecular ligands; we have a limited understanding of drug actions. To address the challenge, this dissertation seeks to develop and experimentally validate innovative computational methods to infer genome-wide protein-ligand interactions and multi-scale drug-phenotype associations, including drug-induced side effects. The hypothesis is that the integration of data-driven bioinformatics tools with structure-and-mechanism-based molecular modeling methods will lead to an optimal tool for accurately predicting drug actions and drug associated phenotypic responses, such as side effects. This dissertation starts by reviewing the current status of computational drug discovery for complex diseases in Chapter 1. In Chapter 2, we present REMAP, a one-class collaborative filtering method to predict off-target interactions from protein-ligand interaction network. In our later work, REMAP was integrated with structural genomics and statistical machine learning methods to design a dual-indication polypharmacological anticancer therapy. In Chapter 3, we extend REMAP, the core method in Chapter 2, into a multi-ranked collaborative filtering algorithm, WINTF, and present relevant mathematical justifications. Chapter 4 is an application of WINTF to repurpose an FDA-approved drug diazoxide as a potential treatment for triple negative breast cancer, a deadly subtype of breast cancer. In Chapter 5, we present a multilayer extension of REMAP, applied to predict drug-induced side effects and the associated biological pathways. In Chapter 6, we close this dissertation by presenting a deep learning application to learn biochemical features from protein sequence representation using a natural language processing method

    Accelerating science with human-aware artificial intelligence

    Full text link
    Artificial intelligence (AI) models trained on published scientific findings have been used to invent valuable materials and targeted therapies, but they typically ignore the human scientists who continually alter the landscape of discovery. Here we show that incorporating the distribution of human expertise by training unsupervised models on simulated inferences cognitively accessible to experts dramatically improves (up to 400%) AI prediction of future discoveries beyond those focused on research content alone, especially when relevant literature is sparse. These models succeed by predicting human predictions and the scientists who will make them. By tuning human-aware AI to avoid the crowd, we can generate scientifically promising "alien" hypotheses unlikely to be imagined or pursued without intervention until the distant future, which hold promise to punctuate scientific advance beyond questions currently pursued. Accelerating human discovery or probing its blind spots, human-aware AI enables us to move toward and beyond the contemporary scientific frontier

    Learning Logical Rules from Knowledge Graphs

    Get PDF
    Ph.D. (Integrated) ThesisExpressing and extracting regularities in multi-relational data, where data points are interrelated and heterogeneous, requires well-designed knowledge representation. Knowledge Graphs (KGs), as a graph-based representation of multi-relational data, have seen a rapidly growing presence in industry and academia, where many real-world applications and academic research are either enabled or augmented through the incorporation of KGs. However, due to the way KGs are constructed, they are inherently noisy and incomplete. In this thesis, we focus on developing logic-based graph reasoning systems that utilize logical rules to infer missing facts for the completion of KGs. Unlike most rule learners that primarily mine abstract rules that contain no constants, we are particularly interested in learning instantiated rules that contain constants due to their ability to represent meaningful patterns and correlations that can not be expressed by abstract rules. The inclusion of instantiated rules often leads to exponential growth in the search space. Therefore, it is necessary to develop optimization strategies to balance between scalability and expressivity. To such an end, we propose GPFL, a probabilistic rule learning system optimized to mine instantiated rules through the implementation of a novel two-stage rule generation mechanism. Through experiments, we demonstrate that GPFL not only performs competitively on knowledge graph completion but is also much more efficient then existing methods at mining instantiated rules. With GPFL, we also reveal overfitting instantiated rules and provide detailed analyses about their impact on system performance. Then, we propose RHF, a generic framework for constructing rule hierarchies from a given set of rules. We demonstrate through experiments that with RHF and the hierarchical pruning techniques enabled by it, significant reductions in runtime and rule size are observed due to the pruning of unpromising rules. Eventually, to test the practicability of rule learning systems, we develop Ranta, a novel drug repurposing system that relies on logical rules as features to make interpretable inferences. Ranta outperforms existing methods by a large margin in predictive performance and can make reasonable repurposing suggestions with interpretable evidence
    corecore