365 research outputs found

    Technologies and Applications for Big Data Value

    Get PDF
    This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The book starts with an introductory chapter that provides an overview of the book by positioning the following chapters in terms of their contributions to technology frameworks which are key elements of the Big Data Value Public-Private Partnership and the upcoming Partnership on AI, Data and Robotics. The remainder of the book is then arranged in two parts. The first part “Technologies and Methods” contains horizontal contributions of technologies and methods that enable data value chains to be applied in any sector. The second part “Processes and Applications” details experience reports and lessons from using big data and data-driven approaches in processes and applications. Its chapters are co-authored with industry experts and cover domains including health, law, finance, retail, manufacturing, mobility, and smart cities. Contributions emanate from the Big Data Value Public-Private Partnership and the Big Data Value Association, which have acted as the European data community's nucleus to bring together businesses with leading researchers to harness the value of data to benefit society, business, science, and industry. The book is of interest to two primary audiences, first, undergraduate and postgraduate students and researchers in various fields, including big data, data science, data engineering, and machine learning and AI. Second, practitioners and industry experts engaged in data-driven systems, software design and deployment projects who are interested in employing these advanced methods to address real-world problems

    Combining Cloud and sensors in a smart city environment

    Get PDF
    International audienceIn the current worldwide ICT scenario, a constantly growing number of ever more powerful devices (smartphones, sensors, household appliances, RFID devices, etc.) join the Internet, significantly impacting the global traffic volume (data sharing, voice, multimedia, etc.) and foreshadowing a world of (more or less) smart devices, or "things" in the Internet of Things (IoT) perspective. Heterogeneous resources can be aggregated and abstracted according to tailored thing-like semantics, thus enabling Things as a Service paradigm, or better a "Cloud of Things". In the Future Internet initiatives, sensor networks will assume even more of a crucial role, especially for making smarter cities. Smarter sensors will be the peripheral elements of a complex future ICT world. However, due to differences in the "appliances" being sensed, smart sensors are very heterogeneous in terms of communication technologies, sensing features and elaboration capabilities. This article intends to contribute to the design of a pervasive infrastructure where new generation services interact with the surrounding environment, thus creating new opportunities for contextualization and geo-awareness. The architecture proposal is based on Sensor Web Enablement standard specifications and makes use of the Contiki Operating System for accomplishing the IoT. Smart cities are assumed as the reference scenario

    Statistical Review of Health Monitoring Models for Real-Time Hospital Scenarios

    Get PDF
    Health Monitoring System Models (HMSMs) need speed, efficiency, and security to work. Cascading components ensure data collection, storage, communication, retrieval, and privacy in these models. Researchers propose many methods to design such models, varying in scalability, multidomain efficiency, flexibility, usage and deployment, computational complexity, cost of deployment, security level, feature usability, and other performance metrics. Thus, HMSM designers struggle to find the best models for their application-specific deployments. They must test and validate different models, which increases design time and cost, affecting deployment feasibility. This article discusses secure HMSMs' application-specific advantages, feature-specific limitations, context-specific nuances, and deployment-specific future research scopes to reduce model selection ambiguity. The models based on the Internet of Things (IoT), Machine Learning Models (MLMs), Blockchain Models, Hashing Methods, Encryption Methods, Distributed Computing Configurations, and Bioinspired Models have better Quality of Service (QoS) and security than their counterparts. Researchers can find application-specific models. This article compares the above models in deployment cost, attack mitigation performance, scalability, computational complexity, and monitoring applicability. This comparative analysis helps readers choose HMSMs for context-specific application deployments. This article also devises performance measuring metrics called Health Monitoring Model Metrics (HM3) to compare the performance of various models based on accuracy, precision, delay, scalability, computational complexity, energy consumption, and security

    Proactive services ecosystem framework

    Get PDF
    Dissertation presented to obtain the degree of Doctor in Electrical and Computer Engineering, specialization on Collaborative Enterprise NetworksCollaborative-Networks (CN) have experienced a fast evolution in the last two decades. The collaboration among independent entities or professionals supported by Information and Communication Technology (ICT) has attracted the research community to establish the conceptual basis for this scientific discipline. Service Orientation has been one of the key selected paradigms for that conceptual basis. Nevertheless, the service concept itself does not have a common understanding in the Business and ICT worlds. In the former, client satisfaction, resources management and business process models are some example concerns, whilst the later deals with interoperability, remote function calling or communication protocols. If for example an enterprise provides some service, it may hire specialists to wrap such service into web-services, expecting to reach worldwide potential new clients. In fact, nowadays Web Services and Service Oriented Architectures (SOA) are the technological elements most commonly used. However, these are passive elements in the sense they do not perform any action towards pursuing business interests, which constitute a limiting factor from a business perspective. Another approach for the above mentioned enterprise is to follow the Multi-Agent Systems (MAS) approach, as the pro-activity is a keyword in such contexts. Nevertheless, as MAS approaches are not so commonly used and not so robust yet, the worldwide potential set of new clients is reduced; which also constitutes an inhibitor factor from the business perspective. This dissertation proposes a Pro-Active Services Ecosystem Framework, gathering inspiration from both the SOA and MAS research areas, trying to bridge the business and ICT worlds through the base concepts for the creation of a Services’ Ecosystem where business services are represented in a pro-active manner towards pursuing business interests, like finding collaboration opportunities or improving the chances each CN member has to see its services selected among competitors, for example. This work also includes a prototype system applied / validated in the area of a Professional Virtual Community of Senior Professionals

    Next Generation Internet of Things – Distributed Intelligence at the Edge and Human-Machine Interactions

    Get PDF
    This book provides an overview of the next generation Internet of Things (IoT), ranging from research, innovation, development priorities, to enabling technologies in a global context. It is intended as a standalone in a series covering the activities of the Internet of Things European Research Cluster (IERC), including research, technological innovation, validation, and deployment.The following chapters build on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT–EPI), the IoT European Large-Scale Pilots Programme and the IoT European Security and Privacy Projects, presenting global views and state-of-the-art results regarding the next generation of IoT research, innovation, development, and deployment.The IoT and Industrial Internet of Things (IIoT) are evolving towards the next generation of Tactile IoT/IIoT, bringing together hyperconnectivity (5G and beyond), edge computing, Distributed Ledger Technologies (DLTs), virtual/ andaugmented reality (VR/AR), and artificial intelligence (AI) transformation.Following the wider adoption of consumer IoT, the next generation of IoT/IIoT innovation for business is driven by industries, addressing interoperability issues and providing new end-to-end security solutions to face continuous treats.The advances of AI technology in vision, speech recognition, natural language processing and dialog are enabling the development of end-to-end intelligent systems encapsulating multiple technologies, delivering services in real-time using limited resources. These developments are focusing on designing and delivering embedded and hierarchical AI solutions in IoT/IIoT, edge computing, using distributed architectures, DLTs platforms and distributed end-to-end security, which provide real-time decisions using less data and computational resources, while accessing each type of resource in a way that enhances the accuracy and performance of models in the various IoT/IIoT applications.The convergence and combination of IoT, AI and other related technologies to derive insights, decisions and revenue from sensor data provide new business models and sources of monetization. Meanwhile, scalable, IoT-enabled applications have become part of larger business objectives, enabling digital transformation with a focus on new services and applications.Serving the next generation of Tactile IoT/IIoT real-time use cases over 5G and Network Slicing technology is essential for consumer and industrial applications and support reducing operational costs, increasing efficiency and leveraging additional capabilities for real-time autonomous systems.New IoT distributed architectures, combined with system-level architectures for edge/fog computing, are evolving IoT platforms, including AI and DLTs, with embedded intelligence into the hyperconnectivity infrastructure.The next generation of IoT/IIoT technologies are highly transformational, enabling innovation at scale, and autonomous decision-making in various application domains such as healthcare, smart homes, smart buildings, smart cities, energy, agriculture, transportation and autonomous vehicles, the military, logistics and supply chain, retail and wholesale, manufacturing, mining and oil and gas

    INQUIRIES IN INTELLIGENT INFORMATION SYSTEMS: NEW TRAJECTORIES AND PARADIGMS

    Get PDF
    Rapid Digital transformation drives organizations to continually revitalize their business models so organizations can excel in such aggressive global competition. Intelligent Information Systems (IIS) have enabled organizations to achieve many strategic and market leverages. Despite the increasing intelligence competencies offered by IIS, they are still limited in many cognitive functions. Elevating the cognitive competencies offered by IIS would impact the organizational strategic positions. With the advent of Deep Learning (DL), IoT, and Edge Computing, IISs has witnessed a leap in their intelligence competencies. DL has been applied to many business areas and many industries such as real estate and manufacturing. Moreover, despite the complexity of DL models, many research dedicated efforts to apply DL to limited computational devices, such as IoTs. Applying deep learning for IoTs will turn everyday devices into intelligent interactive assistants. IISs suffer from many challenges that affect their service quality, process quality, and information quality. These challenges affected, in turn, user acceptance in terms of satisfaction, use, and trust. Moreover, Information Systems (IS) has conducted very little research on IIS development and the foreseeable contribution for the new paradigms to address IIS challenges. Therefore, this research aims to investigate how the employment of new AI paradigms would enhance the overall quality and consequently user acceptance of IIS. This research employs different AI paradigms to develop two different IIS. The first system uses deep learning, edge computing, and IoT to develop scene-aware ridesharing mentoring. The first developed system enhances the efficiency, privacy, and responsiveness of current ridesharing monitoring solutions. The second system aims to enhance the real estate searching process by formulating the search problem as a Multi-criteria decision. The system also allows users to filter properties based on their degree of damage, where a deep learning network allocates damages in 12 each real estate image. The system enhances real-estate website service quality by enhancing flexibility, relevancy, and efficiency. The research contributes to the Information Systems research by developing two Design Science artifacts. Both artifacts are adding to the IS knowledge base in terms of integrating different components, measurements, and techniques coherently and logically to effectively address important issues in IIS. The research also adds to the IS environment by addressing important business requirements that current methodologies and paradigms are not fulfilled. The research also highlights that most IIS overlook important design guidelines due to the lack of relevant evaluation metrics for different business problems
    • …
    corecore