6,797 research outputs found

    Distributed Reasoning in a Peer-to-Peer Setting: Application to the Semantic Web

    Full text link
    In a peer-to-peer inference system, each peer can reason locally but can also solicit some of its acquaintances, which are peers sharing part of its vocabulary. In this paper, we consider peer-to-peer inference systems in which the local theory of each peer is a set of propositional clauses defined upon a local vocabulary. An important characteristic of peer-to-peer inference systems is that the global theory (the union of all peer theories) is not known (as opposed to partition-based reasoning systems). The main contribution of this paper is to provide the first consequence finding algorithm in a peer-to-peer setting: DeCA. It is anytime and computes consequences gradually from the solicited peer to peers that are more and more distant. We exhibit a sufficient condition on the acquaintance graph of the peer-to-peer inference system for guaranteeing the completeness of this algorithm. Another important contribution is to apply this general distributed reasoning setting to the setting of the Semantic Web through the Somewhere semantic peer-to-peer data management system. The last contribution of this paper is to provide an experimental analysis of the scalability of the peer-to-peer infrastructure that we propose, on large networks of 1000 peers

    Graph Based Reduction of Program Verification Conditions

    Get PDF
    Increasing the automaticity of proofs in deductive verification of C programs is a challenging task. When applied to industrial C programs known heuristics to generate simpler verification conditions are not efficient enough. This is mainly due to their size and a high number of irrelevant hypotheses. This work presents a strategy to reduce program verification conditions by selecting their relevant hypotheses. The relevance of a hypothesis is determined by the combination of a syntactic analysis and two graph traversals. The first graph is labeled by constants and the second one by the predicates in the axioms. The approach is applied on a benchmark arising in industrial program verification

    A unified representation for morphological, syntactic, semantic, and referential annotations

    Get PDF
    This paper reports on the SYN-RA (SYNtax-based Reference Annotation) project, an on-going project of annotating German newspaper texts with referential relations. The project has developed an inventory of anaphoric and coreference relations for German in the context of a unified, XML-based annotation scheme for combining morphological, syntactic, semantic, and anaphoric information. The paper discusses how this unified annotation scheme relates to other formats currently discussed in the literature, in particular the annotation graph model of Bird and Liberman (2001) and the pie-in-thesky scheme for semantic annotation

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    Web Queries: From a Web of Data to a Semantic Web?

    Get PDF

    Many-valued logics. A mathematical and computational introduction.

    Get PDF
    2nd edition. Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive modeling, and they are today in more demand than ever, due to the realization that inconsistency and vagueness in knowledge bases and information processes are not only inevitable and acceptable, but also perhaps welcome. The main modern applications of (any) logic are to be found in the digital computer, and we thus require the practical knowledge how to computerize—which also means automate—decisions (i.e. reasoning) in many-valued logics. This, in turn, necessitates a mathematical foundation for these logics. This book provides both these mathematical foundation and practical knowledge in a rigorous, yet accessible, text, while at the same time situating these logics in the context of the satisfiability problem (SAT) and automated deduction. The main text is complemented with a large selection of exercises, a plus for the reader wishing to not only learn about, but also do something with, many-valued logics

    An Efficient Implementation of the Head-Corner Parser

    Get PDF
    This paper describes an efficient and robust implementation of a bi-directional, head-driven parser for constraint-based grammars. This parser is developed for the OVIS system: a Dutch spoken dialogue system in which information about public transport can be obtained by telephone. After a review of the motivation for head-driven parsing strategies, and head-corner parsing in particular, a non-deterministic version of the head-corner parser is presented. A memoization technique is applied to obtain a fast parser. A goal-weakening technique is introduced which greatly improves average case efficiency, both in terms of speed and space requirements. I argue in favor of such a memoization strategy with goal-weakening in comparison with ordinary chart-parsers because such a strategy can be applied selectively and therefore enormously reduces the space requirements of the parser, while no practical loss in time-efficiency is observed. On the contrary, experiments are described in which head-corner and left-corner parsers implemented with selective memoization and goal weakening outperform `standard' chart parsers. The experiments include the grammar of the OVIS system and the Alvey NL Tools grammar. Head-corner parsing is a mix of bottom-up and top-down processing. Certain approaches towards robust parsing require purely bottom-up processing. Therefore, it seems that head-corner parsing is unsuitable for such robust parsing techniques. However, it is shown how underspecification (which arises very naturally in a logic programming environment) can be used in the head-corner parser to allow such robust parsing techniques. A particular robust parsing model is described which is implemented in OVIS.Comment: 31 pages, uses cl.st

    The use of data-mining for the automatic formation of tactics

    Get PDF
    This paper discusses the usse of data-mining for the automatic formation of tactics. It was presented at the Workshop on Computer-Supported Mathematical Theory Development held at IJCAR in 2004. The aim of this project is to evaluate the applicability of data-mining techniques to the automatic formation of tactics from large corpuses of proofs. We data-mine information from large proof corpuses to find commonly occurring patterns. These patterns are then evolved into tactics using genetic programming techniques
    corecore