944 research outputs found

    Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding

    Get PDF
    As lung cancer evolves, the presence of potentially malignant lymph nodes must be assessed to properly estimate disease progression and select the best treatment strategy. A method for accurate and automatic segmentation is hence decisive for quantitatively describing lymph nodes. In this study, the use of 3D convolutional neural networks, either through slab-wise schemes or the leveraging of downsampled entire volumes, is investigated. As lymph nodes have similar attenuation values to nearby anatomical structures, we use the knowledge of other organs as prior information to guide the segmentation. To assess the performances, a 5-fold cross-validation strategy was followed over a dataset of 120 contrast-enhanced CT volumes. For the 1178 lymph nodes with a short-axis diameter ≥10 mm, our best-performing approach reached a patient-wise recall of 92%, a false positive per patient ratio of 5 and a segmentation overlap of 80.5%. Fusing a slab-wise and a full volume approach within an ensemble scheme generated the best performances. The anatomical priors guiding strategy is promising, yet a larger set than four organs appears needed to generate an optimal benefit. A larger dataset is also mandatory given the wide range of expressions a lymph node can exhibit (i.e. shape, location and attenuation).publishedVersio

    Salient Object Detection Techniques in Computer Vision-A Survey.

    Full text link
    Detection and localization of regions of images that attract immediate human visual attention is currently an intensive area of research in computer vision. The capability of automatic identification and segmentation of such salient image regions has immediate consequences for applications in the field of computer vision, computer graphics, and multimedia. A large number of salient object detection (SOD) methods have been devised to effectively mimic the capability of the human visual system to detect the salient regions in images. These methods can be broadly categorized into two categories based on their feature engineering mechanism: conventional or deep learning-based. In this survey, most of the influential advances in image-based SOD from both conventional as well as deep learning-based categories have been reviewed in detail. Relevant saliency modeling trends with key issues, core techniques, and the scope for future research work have been discussed in the context of difficulties often faced in salient object detection. Results are presented for various challenging cases for some large-scale public datasets. Different metrics considered for assessment of the performance of state-of-the-art salient object detection models are also covered. Some future directions for SOD are presented towards end
    • …
    corecore