2,332 research outputs found

    End-to-end Learning of Driving Models from Large-scale Video Datasets

    Full text link
    Robust perception-action models should be learned from training data with diverse visual appearances and realistic behaviors, yet current approaches to deep visuomotor policy learning have been generally limited to in-situ models learned from a single vehicle or a simulation environment. We advocate learning a generic vehicle motion model from large scale crowd-sourced video data, and develop an end-to-end trainable architecture for learning to predict a distribution over future vehicle egomotion from instantaneous monocular camera observations and previous vehicle state. Our model incorporates a novel FCN-LSTM architecture, which can be learned from large-scale crowd-sourced vehicle action data, and leverages available scene segmentation side tasks to improve performance under a privileged learning paradigm.Comment: camera ready for CVPR201

    Embodied Visual Perception Models For Human Behavior Understanding

    Get PDF
    Many modern applications require extracting the core attributes of human behavior such as a person\u27s attention, intent, or skill level from the visual data. There are two main challenges related to this problem. First, we need models that can represent visual data in terms of object-level cues. Second, we need models that can infer the core behavioral attributes from the visual data. We refer to these two challenges as ``learning to see\u27\u27, and ``seeing to learn\u27\u27 respectively. In this PhD thesis, we have made progress towards addressing both challenges. We tackle the problem of ``learning to see\u27\u27 by developing methods that extract object-level information directly from raw visual data. This includes, two top-down contour detectors, DeepEdge and HfL, which can be used to aid high-level vision tasks such as object detection. Furthermore, we also present two semantic object segmentation methods, Boundary Neural Fields (BNFs), and Convolutional Random Walk Networks (RWNs), which integrate low-level affinity cues into an object segmentation process. We then shift our focus to video-level understanding, and present a Spatiotemporal Sampling Network (STSN), which can be used for video object detection, and discriminative motion feature learning. Afterwards, we transition into the second subproblem of ``seeing to learn\u27\u27, for which we leverage first-person GoPro cameras that record what people see during a particular activity. We aim to infer the core behavior attributes such as a person\u27s attention, intention, and his skill level from such first-person data. To do so, we first propose a concept of action-objects--the objects that capture person\u27s conscious visual (watching a TV) or tactile (taking a cup) interactions. We then introduce two models, EgoNet and Visual-Spatial Network (VSN), which detect action-objects in supervised and unsupervised settings respectively. Afterwards, we focus on a behavior understanding task in a complex basketball activity. We present a method for evaluating players\u27 skill level from their first-person basketball videos, and also a model that predicts a player\u27s future motion trajectory from a single first-person image
    • …
    corecore