260 research outputs found

    2017 GREAT Day Program

    Get PDF
    SUNY Geneseo’s Eleventh Annual GREAT Day.https://knightscholar.geneseo.edu/program-2007/1011/thumbnail.jp

    Machine Learning Approaches for the Prioritisation of Cardiovascular Disease Genes Following Genome- wide Association Study

    Get PDF
    Genome-wide association studies (GWAS) have revealed thousands of genetic loci, establishing itself as a valuable method for unravelling the complex biology of many diseases. As GWAS has grown in size and improved in study design to detect effects, identifying real causal signals, disentangling from other highly correlated markers associated by linkage disequilibrium (LD) remains challenging. This has severely limited GWAS findings and brought the method’s value into question. Although thousands of disease susceptibility loci have been reported, causal variants and genes at these loci remain elusive. Post-GWAS analysis aims to dissect the heterogeneity of variant and gene signals. In recent years, machine learning (ML) models have been developed for post-GWAS prioritisation. ML models have ranged from using logistic regression to more complex ensemble models such as random forests and gradient boosting, as well as deep learning models (i.e., neural networks). When combined with functional validation, these methods have shown important translational insights, providing a strong evidence-based approach to direct post-GWAS research. However, ML approaches are in their infancy across biological applications, and as they continue to evolve an evaluation of their robustness for GWAS prioritisation is needed. Here, I investigate the landscape of ML across: selected models, input features, bias risk, and output model performance, with a focus on building a prioritisation framework that is applied to blood pressure GWAS results and tested on re-application to blood lipid traits

    2022 GREAT Day Program

    Get PDF
    SUNY Geneseo’s Sixteenth Annual GREAT Day.https://knightscholar.geneseo.edu/program-2007/1016/thumbnail.jp

    Disease progression and genetic risk factors in the primary tauopathies

    Get PDF
    The primary tauopathies are a group of progressive neurodegenerative diseases within the frontotemporal lobar degeneration spectrum (FTLD) characterised by the accumulation of misfolded, hyperphosphorylated microtubule-associated tau protein (MAPT) within neurons and glial cells. They can be classified according to the underlying ratio of three-repeat (3R) to four-repeat (4R) tau and include Pick’s disease (PiD), which is the only 3R tauopathy, and the 4R tauopathies the most common of which are progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). There are no disease modifying therapies currently available, with research complicated by the wide variability in clinical presentations for each underlying pathology, with presentations often overlapping, as well as the frequent occurrence of atypical presentations that may mimic other non-FTLD pathologies. Although progress has been made in understanding the genetic contribution to disease risk in the more common 4R tauopathies (PSP and CBD), very little is known about the genetics of the 3R tauopathy PiD. There are two broad aims to this thesis; firstly, to use data-driven generative models of disease progression to try and more accurately stage and subtype patients presenting with PSP and corticobasal syndrome (CBS, the most common presentation of CBD), and secondly to identify genetic drivers of disease risk and progression in PiD. Given the rarity of these disorders, as part of this PhD I had to assemble two large cohorts through international collaboration, the 4R tau imaging cohort and the Pick’s disease International Consortium (PIC), to build large enough sample sizes to enable the required analyses. In Chapter 3 I use a probabilistic event-based modelling (EBM) approach applied to structural MRI data to determine the sequence of brain atrophy changes in clinically diagnosed PSP - Richardson syndrome (PSP-RS). The sequence of atrophy predicted by the model broadly mirrors the sequential spread of tau pathology in PSP post-mortem staging studies, and has potential utility to stratify PSP patients on entry into clinical trials based on disease stage, as well as track disease progression. To better characterise the spatiotemporal heterogeneity of the 4R tauopathies, I go on to use Subtype and Stage Inference (SuStaIn), an unsupervised machine algorithm, to identify population subgroups with distinct patterns of atrophy in PSP (Chapter 4) and CBS (Chapter 5). The SuStaIn model provides data-driven evidence for the existence of two spatiotemporal subtypes of atrophy in clinically diagnosed PSP, giving insights into the relationship between pathology and clinical syndrome. In CBS I identify two distinct imaging subtypes that are differentially associated with underlying pathology, and potentially a third subtype that if confirmed in a larger dataset may allow the differentiation of CBD from both PSP and AD pathology using a baseline MRI scan. In Chapter 6 I investigate the association between the MAPT H1/H2 haplotype and PiD, showing for the first time that the H2 haplotype, known to be strongly protective against developing PSP or CBD, is associated with an increased risk of PiD. This is an important finding and has implications for the future development of MAPT isoform-specific therapeutic strategies for the primary tauopathies. In Chapter 7 I perform the first genome wide association study (GWAS) in PiD, identifying five genomic loci that are nominally associated with risk of disease. The top two loci implicate perturbed GABAergic signalling (KCTD8) and dysregulation of the ubiquitin proteosome system (TRIM22) in the pathogenesis of PiD. In the final chapter (Chapter 8) I investigate the genetic determinants of survival in PiD, by carrying out a Cox proportional hazards genome wide survival study (GWSS). I identify a genome-wide significant association with survival on chromosome 3, within the NLGN1 gene. which encodes a synaptic scaffolding protein located at the neuronal pre-synaptic membrane. Loss of synaptic integrity with resulting dysregulation of synaptic transmission leading to increased pathological tau accumulation is a plausible mechanism though which NLGN1 dysfunction could impact on survival in PiD

    Novel digital biomarkers for frontotemporal dementia

    Get PDF
    Frontotemporal dementia (FTD) is a heterogenous neurodegenerative disease and is caused by an autosomal dominant mutation in around one third of cases. This pattern of inheritance enables FTD to be studied in the presymptomatic phase, where individuals carry the genetic mutation but have yet to develop symptoms. There are currently no approved treatments for FTD, although clinical trials aiming to target interventions at the earliest disease stage, are underway. There is an urgent need for biomarkers that can reliably detect and monitor the progression of disease in the presymptomatic period, though there are a distinct lack of sensitive cognitive measures. This thesis aims to establish the validity and sensitivity of a set of digital biomarkers that can be used to measure cognitive function in FTD. I begin this thesis by describing the Ignite computerised cognitive assessment, developing normative properties for the tests through a remote data collection study in over 2,000 healthy controls. I build upon this validation by establishing the concurrent validity of Ignite with gold-standard pen and paper tasks, the test-retest reliability upon repeated administration, and demonstrate the tests are sensitive to presymptomatic impairment across several cognitive domains. I also describe a novel portable eye tracking experiment that can be completed outside of the lab, first highlighting the validity of the tests as measures of cognitive function and demonstrating their sensitivity in detecting early changes in social cognition in the presymptomatic period. Finally, I investigate a smartphone app that passively monitors human-device interactions to generate digital biomarkers of cognitive function. I establish the acceptability of the app in the general population before demonstrating the measures produced can detect differences in keyboard interactions in presymptomatic FTD mutation carriers. This work provides evidence that biomarkers generated from different digital devices are valid and sensitive measures of cognitive impairment in FTD. Therefore, digital biomarkers could replace outdated pen and paper tasks and be used as outcome measures in clinical trials

    2015 GREAT Day Program

    Get PDF
    SUNY Geneseo’s Ninth Annual GREAT Day.https://knightscholar.geneseo.edu/program-2007/1009/thumbnail.jp

    Understanding the Code of Life: Holistic Conceptual Modeling of the Genome

    Full text link
    [ES] En las últimas décadas, los avances en la tecnología de secuenciación han producido cantidades significativas de datos genómicos, hecho que ha revolucionado nuestra comprensión de la biología. Sin embargo, la cantidad de datos generados ha superado con creces nuestra capacidad para interpretarlos. Descifrar el código de la vida es un gran reto. A pesar de los numerosos avances realizados, nuestra comprensión del mismo sigue siendo mínima, y apenas estamos empezando a descubrir todo su potencial, por ejemplo, en áreas como la medicina de precisión o la farmacogenómica. El objetivo principal de esta tesis es avanzar en nuestra comprensión de la vida proponiendo una aproximación holística mediante un enfoque basado en modelos que consta de tres artefactos: i) un esquema conceptual del genoma, ii) un método para su aplicación en el mundo real, y iii) el uso de ontologías fundacionales para representar el conocimiento del dominio de una forma más precisa y explícita. Las dos primeras contribuciones se han validado mediante la implementación de sistemas de información genómicos basados en modelos conceptuales. La tercera contribución se ha validado mediante experimentos empíricos que han evaluado si el uso de ontologías fundacionales conduce a una mejor comprensión del dominio genómico. Los artefactos generados ofrecen importantes beneficios. En primer lugar, se han generado procesos de gestión de datos más eficientes, lo que ha permitido mejorar los procesos de extracción de conocimientos. En segundo lugar, se ha logrado una mejor comprensión y comunicación del dominio.[CA] En les últimes dècades, els avanços en la tecnologia de seqüenciació han produït quantitats significatives de dades genòmiques, fet que ha revolucionat la nostra comprensió de la biologia. No obstant això, la quantitat de dades generades ha superat amb escreix la nostra capacitat per a interpretar-los. Desxifrar el codi de la vida és un gran repte. Malgrat els nombrosos avanços realitzats, la nostra comprensió del mateix continua sent mínima, i a penes estem començant a descobrir tot el seu potencial, per exemple, en àrees com la medicina de precisió o la farmacogenómica. L'objectiu principal d'aquesta tesi és avançar en la nostra comprensió de la vida proposant una aproximació holística mitjançant un enfocament basat en models que consta de tres artefactes: i) un esquema conceptual del genoma, ii) un mètode per a la seua aplicació en el món real, i iii) l'ús d'ontologies fundacionals per a representar el coneixement del domini d'una forma més precisa i explícita. Les dues primeres contribucions s'han validat mitjançant la implementació de sistemes d'informació genòmics basats en models conceptuals. La tercera contribució s'ha validat mitjançant experiments empírics que han avaluat si l'ús d'ontologies fundacionals condueix a una millor comprensió del domini genòmic. Els artefactes generats ofereixen importants beneficis. En primer lloc, s'han generat processos de gestió de dades més eficients, la qual cosa ha permés millorar els processos d'extracció de coneixements. En segon lloc, s'ha aconseguit una millor comprensió i comunicació del domini.[EN] Over the last few decades, advances in sequencing technology have produced significant amounts of genomic data, which has revolutionised our understanding of biology. However, the amount of data generated has far exceeded our ability to interpret it. Deciphering the code of life is a grand challenge. Despite our progress, our understanding of it remains minimal, and we are just beginning to uncover its full potential, for instance, in areas such as precision medicine or pharmacogenomics. The main objective of this thesis is to advance our understanding of life by proposing a holistic approach, using a model-based approach, consisting of three artifacts: i) a conceptual schema of the genome, ii) a method for its application in the real-world, and iii) the use of foundational ontologies to represent domain knowledge in a more unambiguous and explicit way. The first two contributions have been validated by implementing genome information systems based on conceptual models. The third contribution has been validated by empirical experiments assessing whether using foundational ontologies leads to a better understanding of the genomic domain. The artifacts generated offer significant benefits. First, more efficient data management processes were produced, leading to better knowledge extraction processes. Second, a better understanding and communication of the domain was achieved.Las fructíferas discusiones y los resultados derivados de los proyectos INNEST2021 /57, MICIN/AEI/10.13039/501100011033, PID2021-123824OB-I00, CIPROM/2021/023 y PDC2021- 121243-I00 han contribuido en gran medida a la calidad final de este tesis.García Simón, A. (2022). Understanding the Code of Life: Holistic Conceptual Modeling of the Genome [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19143

    Evolution from the ground up with Amee – From basic concepts to explorative modeling

    Get PDF
    Evolutionary theory has been the foundation of biological research for about a century now, yet over the past few decades, new discoveries and theoretical advances have rapidly transformed our understanding of the evolutionary process. Foremost among them are evolutionary developmental biology, epigenetic inheritance, and various forms of evolu- tionarily relevant phenotypic plasticity, as well as cultural evolution, which ultimately led to the conceptualization of an extended evolutionary synthesis. Starting from abstract principles rooted in complexity theory, this thesis aims to provide a unified conceptual understanding of any kind of evolution, biological or otherwise. This is used in the second part to develop Amee, an agent-based model that unifies development, niche construction, and phenotypic plasticity with natural selection based on a simulated ecology. Amee is implemented in Utopia, which allows performant, integrated implementation and simulation of arbitrary agent-based models. A phenomenological overview over Amee’s capabilities is provided, ranging from the evolution of ecospecies down to the evolution of metabolic networks and up to beyond-species-level biological organization, all of which emerges autonomously from the basic dynamics. The interaction of development, plasticity, and niche construction has been investigated, and it has been shown that while expected natural phenomena can, in principle, arise, the accessible simulation time and system size are too small to produce natural evo-devo phenomena and –structures. Amee thus can be used to simulate the evolution of a wide variety of processes

    2018 GREAT Day Program

    Get PDF
    SUNY Geneseo’s Twelfth Annual GREAT Day.https://knightscholar.geneseo.edu/program-2007/1012/thumbnail.jp

    The 26th Annual Boston University Undergraduate Research (UROP) Abstracts

    Full text link
    The file is available to be viewed by anyone in the BU community. To view the file, click on "Login" or the Person icon top-right with your BU Kerberos password. You will then be able to see an option to View.Abstracts for the 2023 UROP Symposium, held at Boston University on October 20, 2023 at GSU Metcalf Ballroom. Cover and logo design by Morgan Danna. Booklet compiled by Molly Power
    corecore