9,799 research outputs found

    Multi-Task Active Learning for Neural Semantic Role Labeling on Low Resource Conversational Corpus

    Full text link
    Most Semantic Role Labeling (SRL) approaches are supervised methods which require a significant amount of annotated corpus, and the annotation requires linguistic expertise. In this paper, we propose a Multi-Task Active Learning framework for Semantic Role Labeling with Entity Recognition (ER) as the auxiliary task to alleviate the need for extensive data and use additional information from ER to help SRL. We evaluate our approach on Indonesian conversational dataset. Our experiments show that multi-task active learning can outperform single-task active learning method and standard multi-task learning. According to our results, active learning is more efficient by using 12% less of training data compared to passive learning in both single-task and multi-task setting. We also introduce a new dataset for SRL in Indonesian conversational domain to encourage further research in this area.Comment: ACL 2018 workshop on Deep Learning Approaches for Low-Resource NL

    AppTechMiner: Mining Applications and Techniques from Scientific Articles

    Full text link
    This paper presents AppTechMiner, a rule-based information extraction framework that automatically constructs a knowledge base of all application areas and problem solving techniques. Techniques include tools, methods, datasets or evaluation metrics. We also categorize individual research articles based on their application areas and the techniques proposed/improved in the article. Our system achieves high average precision (~82%) and recall (~84%) in knowledge base creation. It also performs well in application and technique assignment to an individual article (average accuracy ~66%). In the end, we further present two use cases presenting a trivial information retrieval system and an extensive temporal analysis of the usage of techniques and application areas. At present, we demonstrate the framework for the domain of computational linguistics but this can be easily generalized to any other field of research.Comment: JCDL 2017, 6th International Workshop on Mining Scientific Publications. arXiv admin note: substantial text overlap with arXiv:1608.0638

    Learning to see like children: proof of concept

    Full text link
    In the last few years we have seen a growing interest in machine learning approaches to computer vision and, especially, to semantic labeling. Nowadays state of the art systems use deep learning on millions of labeled images with very successful results on benchmarks, though it is unlikely to expect similar results in unrestricted visual environments. Most learning schemes essentially ignore the inherent sequential structure of videos: this might be a critical issue, since any visual recognition process is remarkably more complex when shuffling video frames. Based on this remark, we propose a re-foundation of the communication protocol between visual agents and the environment, which is referred to as learning to see like children. Like for human interaction, visual concepts are acquired by the agents solely by processing their own visual stream along with human supervisions on selected pixels. We give a proof of concept that remarkable semantic labeling can emerge within this protocol by using only a few supervised examples. This is made possible by exploiting a constraint of motion coherent labeling that virtually offers tons of supervisions. Additional visual constraints, including those associated with object supervisions, are used within the context of learning from constraints. The framework is extended in the direction of lifelong learning, so as our visual agents live in their own visual environment without distinguishing learning and test set. Learning takes place in deep architectures under a progressive developmental scheme. In order to evaluate our Developmental Visual Agents (DVAs), in addition to classic benchmarks, we open the doors of our lab, allowing people to evaluate DVAs by crowd-sourcing. Such assessment mechanism might result in a paradigm shift in methodologies and algorithms for computer vision, encouraging truly novel solutions within the proposed framework

    Building a Semantic Role Labelling System for Vietnamese

    Full text link
    Semantic role labelling (SRL) is a task in natural language processing which detects and classifies the semantic arguments associated with the predicates of a sentence. It is an important step towards understanding the meaning of a natural language. There exists SRL systems for well-studied languages like English, Chinese or Japanese but there is not any such system for the Vietnamese language. In this paper, we present the first SRL system for Vietnamese with encouraging accuracy. We first demonstrate that a simple application of SRL techniques developed for English could not give a good accuracy for Vietnamese. We then introduce a new algorithm for extracting candidate syntactic constituents, which is much more accurate than the common node-mapping algorithm usually used in the identification step. Finally, in the classification step, in addition to the common linguistic features, we propose novel and useful features for use in SRL. Our SRL system achieves an F1F_1 score of 73.53\% on the Vietnamese PropBank corpus. This system, including software and corpus, is available as an open source project and we believe that it is a good baseline for the development of future Vietnamese SRL systems.Comment: 8 pages, ICDIM 201

    Natural Language Processing (almost) from Scratch

    Full text link
    We propose a unified neural network architecture and learning algorithm that can be applied to various natural language processing tasks including: part-of-speech tagging, chunking, named entity recognition, and semantic role labeling. This versatility is achieved by trying to avoid task-specific engineering and therefore disregarding a lot of prior knowledge. Instead of exploiting man-made input features carefully optimized for each task, our system learns internal representations on the basis of vast amounts of mostly unlabeled training data. This work is then used as a basis for building a freely available tagging system with good performance and minimal computational requirements

    Multi-task Learning for Japanese Predicate Argument Structure Analysis

    Full text link
    An event-noun is a noun that has an argument structure similar to a predicate. Recent works, including those considered state-of-the-art, ignore event-nouns or build a single model for solving both Japanese predicate argument structure analysis (PASA) and event-noun argument structure analysis (ENASA). However, because there are interactions between predicates and event-nouns, it is not sufficient to target only predicates. To address this problem, we present a multi-task learning method for PASA and ENASA. Our multi-task models improved the performance of both tasks compared to a single-task model by sharing knowledge from each task. Moreover, in PASA, our models achieved state-of-the-art results in overall F1 scores on the NAIST Text Corpus. In addition, this is the first work to employ neural networks in ENASA.Comment: 10 pages; NAACL 201

    Representing Verbs as Argument Concepts

    Full text link
    Verbs play an important role in the understanding of natural language text. This paper studies the problem of abstracting the subject and object arguments of a verb into a set of noun concepts, known as the "argument concepts". This set of concepts, whose size is parameterized, represents the fine-grained semantics of a verb. For example, the object of "enjoy" can be abstracted into time, hobby and event, etc. We present a novel framework to automatically infer human readable and machine computable action concepts with high accuracy.Comment: 7 pages, 2 figures, AAAI 201

    Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation

    Full text link
    Unsupervised domain adaptation (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain. Prior UDA methods typically require to access the source data when learning to adapt the model, making them risky and inefficient for decentralized private data. This work tackles a practical setting where only a trained source model is available and investigates how we can effectively utilize such a model without source data to solve UDA problems. We propose a simple yet generic representation learning framework, named \emph{Source HypOthesis Transfer} (SHOT). SHOT freezes the classifier module (hypothesis) of the source model and learns the target-specific feature extraction module by exploiting both information maximization and self-supervised pseudo-labeling to implicitly align representations from the target domains to the source hypothesis. To verify its versatility, we evaluate SHOT in a variety of adaptation cases including closed-set, partial-set, and open-set domain adaptation. Experiments indicate that SHOT yields state-of-the-art results among multiple domain adaptation benchmarks.Comment: ICML2020. Fix the typos for Digits. Code is available at https://github.com/tim-learn/SHO

    Vietnamese Semantic Role Labelling

    Full text link
    In this paper, we study semantic role labelling (SRL), a subtask of semantic parsing of natural language sentences and its application for the Vietnamese language. We present our effort in building Vietnamese PropBank, the first Vietnamese SRL corpus and a software system for labelling semantic roles of Vietnamese texts. In particular, we present a novel constituent extraction algorithm in the argument candidate identification step which is more suitable and more accurate than the common node-mapping method. In the machine learning part, our system integrates distributed word features produced by two recent unsupervised learning models in two learned statistical classifiers and makes use of integer linear programming inference procedure to improve the accuracy. The system is evaluated in a series of experiments and achieves a good result, an F1F_1 score of 74.77%. Our system, including corpus and software, is available as an open source project for free research and we believe that it is a good baseline for the development of future Vietnamese SRL systems.Comment: Accepted to the VNU Journal of Scienc

    Variational Adversarial Active Learning

    Full text link
    Active learning aims to develop label-efficient algorithms by sampling the most representative queries to be labeled by an oracle. We describe a pool-based semi-supervised active learning algorithm that implicitly learns this sampling mechanism in an adversarial manner. Unlike conventional active learning algorithms, our approach is task agnostic, i.e., it does not depend on the performance of the task for which we are trying to acquire labeled data. Our method learns a latent space using a variational autoencoder (VAE) and an adversarial network trained to discriminate between unlabeled and labeled data. The mini-max game between the VAE and the adversarial network is played such that while the VAE tries to trick the adversarial network into predicting that all data points are from the labeled pool, the adversarial network learns how to discriminate between dissimilarities in the latent space. We extensively evaluate our method on various image classification and semantic segmentation benchmark datasets and establish a new state of the art on CIFAR10/100\text{CIFAR10/100}, Caltech-256\text{Caltech-256}, ImageNet\text{ImageNet}, Cityscapes\text{Cityscapes}, and BDD100K\text{BDD100K}. Our results demonstrate that our adversarial approach learns an effective low dimensional latent space in large-scale settings and provides for a computationally efficient sampling method. Our code is available at https://github.com/sinhasam/vaal.Comment: First two authors contributed equally, listed alphabetically. Accepted as Oral at ICCV 201
    • …
    corecore