67,251 research outputs found

    Against Second-Order Primitivism

    Get PDF
    In the language of second-order logic, first- and second-order variables are distinguished syntactically and cannot be grammatically substituted. According to a prominent argument for the deployment of these languages, these substitution failures are necessary to block the derivation of paradoxes that result from attempts to generalize over predicate interpretations. I first examine previous approaches which interpret second-order sentences using expressions of natural language and argue that these approaches undermine these syntactic restrictions. I then examine Williamson’s primitivist approach according to which second-order sentences are not offered readings in a previously understood language. I argue that the syntactic restrictions alone do not block the derivation of the paradox, unless they are backed by a principled reason that the language cannot be expanded to allow the grammatical substitution of first- and second- order variables. I argue that there is neither a syntactic nor a semantic principle that prohibits such an expansion

    Semantic Matchmaking as Non-Monotonic Reasoning: A Description Logic Approach

    Full text link
    Matchmaking arises when supply and demand meet in an electronic marketplace, or when agents search for a web service to perform some task, or even when recruiting agencies match curricula and job profiles. In such open environments, the objective of a matchmaking process is to discover best available offers to a given request. We address the problem of matchmaking from a knowledge representation perspective, with a formalization based on Description Logics. We devise Concept Abduction and Concept Contraction as non-monotonic inferences in Description Logics suitable for modeling matchmaking in a logical framework, and prove some related complexity results. We also present reasonable algorithms for semantic matchmaking based on the devised inferences, and prove that they obey to some commonsense properties. Finally, we report on the implementation of the proposed matchmaking framework, which has been used both as a mediator in e-marketplaces and for semantic web services discovery

    Assessing the contribution of shallow and deep knowledge sources for word sense disambiguation

    No full text
    Corpus-based techniques have proved to be very beneficial in the development of efficient and accurate approaches to word sense disambiguation (WSD) despite the fact that they generally represent relatively shallow knowledge. It has always been thought, however, that WSD could also benefit from deeper knowledge sources. We describe a novel approach to WSD using inductive logic programming to learn theories from first-order logic representations that allows corpus-based evidence to be combined with any kind of background knowledge. This approach has been shown to be effective over several disambiguation tasks using a combination of deep and shallow knowledge sources. Is it important to understand the contribution of the various knowledge sources used in such a system. This paper investigates the contribution of nine knowledge sources to the performance of the disambiguation models produced for the SemEval-2007 English lexical sample task. The outcome of this analysis will assist future work on WSD in concentrating on the most useful knowledge sources

    Principle Based Semantics for HPSG

    Full text link
    The paper presents a constraint based semantic formalism for HPSG. The advantages of the formlism are shown with respect to a grammar for a fragment of German that deals with (i) quantifier scope ambiguities triggered by scrambling and/or movement and (ii) ambiguities that arise from the collective/distributive distinction of plural NPs. The syntax-semantics interface directly implements syntactic conditions on quantifier scoping and distributivity. The construction of semantic representations is guided by general principles governing the interaction between syntax and semantics. Each of these principles acts as a constraint to narrow down the set of possible interpretations of a sentence. Meanings of ambiguous sentences are represented by single partial representations (so-called U(nderspecified) D(iscourse) R(epresentation) S(tructure)s) to which further constraints can be added monotonically to gain more information about the content of a sentence. There is no need to build up a large number of alternative representations of the sentence which are then filtered by subsequent discourse and world knowledge. The advantage of UDRSs is not only that they allow for monotonic incremental interpretation but also that they are equipped with truth conditions and a proof theory that allows for inferences to be drawn directly on structures where quantifier scope is not resolved

    A Novel Approach to Multimedia Ontology Engineering for Automated Reasoning over Audiovisual LOD Datasets

    Full text link
    Multimedia reasoning, which is suitable for, among others, multimedia content analysis and high-level video scene interpretation, relies on the formal and comprehensive conceptualization of the represented knowledge domain. However, most multimedia ontologies are not exhaustive in terms of role definitions, and do not incorporate complex role inclusions and role interdependencies. In fact, most multimedia ontologies do not have a role box at all, and implement only a basic subset of the available logical constructors. Consequently, their application in multimedia reasoning is limited. To address the above issues, VidOnt, the very first multimedia ontology with SROIQ(D) expressivity and a DL-safe ruleset has been introduced for next-generation multimedia reasoning. In contrast to the common practice, the formal grounding has been set in one of the most expressive description logics, and the ontology validated with industry-leading reasoners, namely HermiT and FaCT++. This paper also presents best practices for developing multimedia ontologies, based on my ontology engineering approach
    corecore