91,548 research outputs found

    Semantic Reference Model in Medical Time Series

    Get PDF
    The analysis of time series databases is very important in the area of medicine. Most of the approaches that address this problem are based on numerical algorithms that calculate distances, clusters, index trees, etc. However, a domain-dependent analyis sometimes needs to be conducted to search for the symblic rather than numerical characteristics of the time series. This paper focuses on our work on the discovery of reference models in time series of isokinetics data and a technique that transforms the numerical time series into symblic series. We briefly describe the algorithm used to create reference models for population groups an its application in the real world. Then, we describe a method based on extracting semantic information from a numerical series. This symbolic information helps users to effciently analyze and compare time series in the same or similar way as a domain expert would

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    The neurocognitive gains of diagnostic reasoning training using simulated interactive veterinary cases

    Get PDF
    The present longitudinal study ascertained training-associated transformations in the neural underpinnings of diagnostic reasoning, using a simulation game named “Equine Virtual Farm” (EVF). Twenty participants underwent structural, EVF/task-based and resting-state MRI and diffusion tensor imaging (DTI) before and after completing their training on diagnosing simulated veterinary cases. Comparing playing veterinarian versus seeing a colorful image across training sessions revealed the transition of brain activity from scientific creativity regions pre-training (left middle frontal and temporal gyrus) to insight problem-solving regions post-training (right cerebellum, middle cingulate and medial superior gyrus and left postcentral gyrus). Further, applying linear mixed-effects modelling on graph centrality metrics revealed the central roles of the creative semantic (inferior frontal, middle frontal and angular gyrus and parahippocampus) and reward systems (orbital gyrus, nucleus accumbens and putamen) in driving pre-training diagnostic reasoning; whereas, regions implicated in inductive reasoning (superior temporal and medial postcentral gyrus and parahippocampus) were the main post-training hubs. Lastly, resting-state and DTI analysis revealed post-training effects within the occipitotemporal semantic processing region. Altogether, these results suggest that simulation-based training transforms diagnostic reasoning in novices from regions implicated in creative semantic processing to regions implicated in improvised rule-based problem-solving

    Ontology as the core discipline of biomedical informatics: Legacies of the past and recommendations for the future direction of research

    Get PDF
    The automatic integration of rapidly expanding information resources in the life sciences is one of the most challenging goals facing biomedical research today. Controlled vocabularies, terminologies, and coding systems play an important role in realizing this goal, by making it possible to draw together information from heterogeneous sources – for example pertaining to genes and proteins, drugs and diseases – secure in the knowledge that the same terms will also represent the same entities on all occasions of use. In the naming of genes, proteins, and other molecular structures, considerable efforts are under way to reduce the effects of the different naming conventions which have been spawned by different groups of researchers. Electronic patient records, too, increasingly involve the use of standardized terminologies, and tremendous efforts are currently being devoted to the creation of terminology resources that can meet the needs of a future era of personalized medicine, in which genomic and clinical data can be aligned in such a way that the corresponding information systems become interoperable

    The INCF Digital Atlasing Program: Report on Digital Atlasing Standards in the Rodent Brain

    Get PDF
    The goal of the INCF Digital Atlasing Program is to provide the vision and direction necessary to make the rapidly growing collection of multidimensional data of the rodent brain (images, gene expression, etc.) widely accessible and usable to the international research community. This Digital Brain Atlasing Standards Task Force was formed in May 2008 to investigate the state of rodent brain digital atlasing, and formulate standards, guidelines, and policy recommendations.

Our first objective has been the preparation of a detailed document that includes the vision and specific description of an infrastructure, systems and methods capable of serving the scientific goals of the community, as well as practical issues for achieving
the goals. This report builds on the 1st INCF Workshop on Mouse and Rat Brain Digital Atlasing Systems (Boline et al., 2007, _Nature Preceedings_, doi:10.1038/npre.2007.1046.1) and includes a more detailed analysis of both the current state and desired state of digital atlasing along with specific recommendations for achieving these goals

    Utilising semantic technologies for decision support in dementia care

    Get PDF
    The main objective of this work is to discuss our experience in utilising semantic technologies for building decision support in Dementia care systems that are based on the non-intrusive on the non-intrusive monitoring of the patient’s behaviour. Our approach adopts context-aware modelling of the patient’s condition to facilitate the analysis of the patient’s behaviour within the inhabited environment (movement and room occupancy patterns, use of equipment, etc.) with reference to the semantic knowledge about the patient’s condition (history of present of illness, dependable behaviour patterns, etc.). The reported work especially focuses on the critical role of the semantic reasoning engine in inferring medical advice, and by means of practical experimentation and critical analysis suggests important findings related to the methodology of deploying the appropriate semantic rules systems, and the dynamics of the efficient utilisation of complex event processing technology in order to the meet the requirements of decision support for remote healthcare systems

    UNet++: A Nested U-Net Architecture for Medical Image Segmentation

    Full text link
    In this paper, we present UNet++, a new, more powerful architecture for medical image segmentation. Our architecture is essentially a deeply-supervised encoder-decoder network where the encoder and decoder sub-networks are connected through a series of nested, dense skip pathways. The re-designed skip pathways aim at reducing the semantic gap between the feature maps of the encoder and decoder sub-networks. We argue that the optimizer would deal with an easier learning task when the feature maps from the decoder and encoder networks are semantically similar. We have evaluated UNet++ in comparison with U-Net and wide U-Net architectures across multiple medical image segmentation tasks: nodule segmentation in the low-dose CT scans of chest, nuclei segmentation in the microscopy images, liver segmentation in abdominal CT scans, and polyp segmentation in colonoscopy videos. Our experiments demonstrate that UNet++ with deep supervision achieves an average IoU gain of 3.9 and 3.4 points over U-Net and wide U-Net, respectively.Comment: 8 pages, 3 figures, 3 tables, accepted by 4th Deep Learning in Medical Image Analysis (DLMIA) Worksho
    • …
    corecore