61 research outputs found

    Medical SLAM in an autonomous robotic system

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-operative morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilities by observing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted instruments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This thesis addresses the ambitious goal of achieving surgical autonomy, through the study of the anatomical environment by Initially studying the technology present and what is needed to analyze the scene: vision sensors. A novel endoscope for autonomous surgical task execution is presented in the first part of this thesis. Which combines a standard stereo camera with a depth sensor. This solution introduces several key advantages, such as the possibility of reconstructing the 3D at a greater distance than traditional endoscopes. Then the problem of hand-eye calibration is tackled, which unites the vision system and the robot in a single reference system. Increasing the accuracy in the surgical work plan. In the second part of the thesis the problem of the 3D reconstruction and the algorithms currently in use were addressed. In MIS, simultaneous localization and mapping (SLAM) can be used to localize the pose of the endoscopic camera and build ta 3D model of the tissue surface. Another key element for MIS is to have real-time knowledge of the pose of surgical tools with respect to the surgical camera and underlying anatomy. Starting from the ORB-SLAM algorithm we have modified the architecture to make it usable in an anatomical environment by adding the registration of the pre-operative information of the intervention to the map obtained from the SLAM. Once it has been proven that the slam algorithm is usable in an anatomical environment, it has been improved by adding semantic segmentation to be able to distinguish dynamic features from static ones. All the results in this thesis are validated on training setups, which mimics some of the challenges of real surgery and on setups that simulate the human body within Autonomous Robotic Surgery (ARS) and Smart Autonomous Robotic Assistant Surgeon (SARAS) projects

    Medical SLAM in an autonomous robotic system

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-operative morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilities by observing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted instruments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This thesis addresses the ambitious goal of achieving surgical autonomy, through the study of the anatomical environment by Initially studying the technology present and what is needed to analyze the scene: vision sensors. A novel endoscope for autonomous surgical task execution is presented in the first part of this thesis. Which combines a standard stereo camera with a depth sensor. This solution introduces several key advantages, such as the possibility of reconstructing the 3D at a greater distance than traditional endoscopes. Then the problem of hand-eye calibration is tackled, which unites the vision system and the robot in a single reference system. Increasing the accuracy in the surgical work plan. In the second part of the thesis the problem of the 3D reconstruction and the algorithms currently in use were addressed. In MIS, simultaneous localization and mapping (SLAM) can be used to localize the pose of the endoscopic camera and build ta 3D model of the tissue surface. Another key element for MIS is to have real-time knowledge of the pose of surgical tools with respect to the surgical camera and underlying anatomy. Starting from the ORB-SLAM algorithm we have modified the architecture to make it usable in an anatomical environment by adding the registration of the pre-operative information of the intervention to the map obtained from the SLAM. Once it has been proven that the slam algorithm is usable in an anatomical environment, it has been improved by adding semantic segmentation to be able to distinguish dynamic features from static ones. All the results in this thesis are validated on training setups, which mimics some of the challenges of real surgery and on setups that simulate the human body within Autonomous Robotic Surgery (ARS) and Smart Autonomous Robotic Assistant Surgeon (SARAS) projects

    Proceedings of the EAA Joint Symposium on Auralization and Ambisonics 2014

    Get PDF
    In consideration of the remarkable intensity of research in the field of Virtual Acoustics, including different areas such as sound field analysis and synthesis, spatial audio technologies, and room acoustical modeling and auralization, it seemed about time to organize a second international symposium following the model of the first EAA Auralization Symposium initiated in 2009 by the acoustics group of the former Helsinki University of Technology (now Aalto University). Additionally, research communities which are focused on different approaches to sound field synthesis such as Ambisonics or Wave Field Synthesis have, in the meantime, moved closer together by using increasingly consistent theoretical frameworks. Finally, the quality of virtual acoustic environments is often considered as a result of all processing stages mentioned above, increasing the need for discussions on consistent strategies for evaluation. Thus, it seemed appropriate to integrate two of the most relevant communities, i.e. to combine the 2nd International Auralization Symposium with the 5th International Symposium on Ambisonics and Spherical Acoustics. The Symposia on Ambisonics, initiated in 2009 by the Institute of Electronic Music and Acoustics of the University of Music and Performing Arts in Graz, were traditionally dedicated to problems of spherical sound field analysis and re-synthesis, strategies for the exchange of ambisonics-encoded audio material, and – more than other conferences in this area – the artistic application of spatial audio systems. This publication contains the official conference proceedings. It includes 29 manuscripts which have passed a 3-stage peer-review with a board of about 70 international reviewers involved in the process. Each contribution has already been published individually with a unique DOI on the DepositOnce digital repository of TU Berlin. Some conference contributions have been recommended for resubmission to Acta Acustica united with Acustica, to possibly appear in a Special Issue on Virtual Acoustics in late 2014. These are not published in this collection.European Acoustics Associatio

    On the plausibility of simplified acoustic room representations for listener translation in dynamic binaural auralizations

    Get PDF
    Diese Doktorarbeit untersucht die Wahrnehmung vereinfachter akustischer Raumrepräsentationen in positionsdynamischer Binauralwiedergabe für die Hörertranslation. Die dynamische Binauralsynthese ist eine Audiowiedergabemethode zur Erzeugung räumlicher auditiver Illusionen über Kopfhörer für virtuelle, erweiterte und gemischte Realität (VR/AR/MR). Dabei ist es nun eine typische Anforderung, immersive Inhalte in sechs Freiheitsgraden (6DOF) zu erkunden. Dynamische binaurale Schallfeldimitationen mit hoher physikalischer Genauigkeit zu realisieren, ist meist mit sehr hohem Rechenaufwand verbunden. Frühere psychoakustische Studien weisen jedoch darauf hin, dass Menschen eine begrenzte Empfindlichkeit gegenüber den Details des Schallfelds haben, insbesondere im späten Nachhall. Dies birgt das Potential physikalischer Vereinfachungen bei der positionsdynamischen Auralisation von Räumen. Beispielsweise wurden Konzepte vorgeschlagen, die auf der perzeptiven Mixing Time oder der Hörbarkeitsschwelle von frühen Reflexionen basieren, für welche jedoch eine gründliche psychoakustische Bewertung noch aussteht. Zunächst wurde ein Aufbau zur positionsdynamischen Raumauralisation implementiert und evaluiert. Daran untersucht die Arbeit wesentliche Systemparameter wie die erforderliche räumliche Auflösung eines Positionsrasters für die dynamische Anpassung. Da allgemein etablierte Testmethoden zur wahrnehmungsbezogenen Bewertung von räumlichen auditiven Illusionen unter Berücksichtigung interaktiver Hörertranslation fehlten, untersucht die Arbeit verschiedene Ansätze zur Messung der Plausibilität. Auf dieser Grundlage werden physikalische Vereinfachungen im Verlauf des Schallfeldes in positionsdynamischen binauralen Auralisationen der Raumakustik untersucht. Für die Hauptexperimente wurden binaurale Raumimpulsantworten (BRIRs) entlang einer Linie für die Hörertranslation in einem eher trockenen Hörlabor und einem halligen Seminarraum ähnlicher Größe gemessen. Die erstellten Datensätze enthalten Szenarien von Hörerbewegungen auf eine virtuelle Schallquelle zu, daran vorbei, davon weg oder dahinter. Darüber hinaus betrachten die Untersuchungen zwei Extremfälle der Quellenorientierung, um die Auswirkungen einer Variation der Schallquellenrichtcharakteristik zu berücksichtigen. Die BRIR-Sätze werden systematisch bearbeitet und vereinfacht, um die Auswirkungen auf die Wahrnehmung zu bewerten. Insbesondere das Konzept der perzeptiven Mixing Time und manipulierte räumlich-zeitliche Muster früher Reflexionen dienten als Testfälle in den psychoakustischen Studien. Die Ergebnisse zeigen ein hohes Potential für Vereinfachungen, unterstreichen aber auch die Relevanz der genauen Imitation prominenter früher Reflexionen. Die Ergebnisse bestätigen auch das Konzept der wahrnehmungsbezogenen Mixing Time für die betrachteten Fälle der positionsdynamischen binauralen Wiedergabe. Die Beobachtungen verdeutlichen, dass gängige Testszenarien für Auralisierungen, Interpolation und Extrapolation nicht kritisch genug sind, um allgemeine Schlussfolgerungen über die Eignung der getesteten Rendering-Ansätze zu ziehen. Die Arbeit zeigt Lösungsansätze auf.This thesis investigates the effect of simplified acoustic room representations in position-dynamic binaural audio for listener translation. Dynamic binaural synthesis is an audio reproduction method to create spatial auditory illusions over headphones for virtual, augmented, and mixed reality (AR/VR/MR). It has become a typical demand to explore immersive content in six degrees of freedom (6DOF). Realizing dynamic binaural sound field imitations with high physical accuracy requires high computational effort. However, previous psychoacoustic research indicates that humans have limited sensitivity to the details of the sound field. This fact bears the potential to simplify the physics in position-dynamic room auralizations. For example, concepts based on the perceptual mixing time or the audibility threshold of early reflections have been proposed. This thesis investigates the effect of simplified acoustic room representations in position-dynamic binaural audio for listener translation. First, a setup for position dynamic binaural room auralization was implemented and evaluated. Essential system parameters like the required position grid resolution for the audio reproduction were examined. Due to the lack of generally established test methods for the perceptual evaluation of spatial auditory illusions considering interactive listener translation, this thesis explores different approaches for measuring plausibility. Based on this foundation, this work examines physical impairments and simplifications in the progress of the sound field in position dynamic binaural auralizations of room acoustics. For the main experiments, sets of binaural room impulse responses (BRIRs) were measured along a line for listener translation in a relatively dry listening laboratory and a reverberant seminar room of similar size. These sets include scenarios of walking towards a virtual sound source, past it, away from it, or behind it. The consideration of two extreme cases of source orientation took into account the effects of variations in directivity. The BRIR sets were systematically impaired and simplified to evaluate the perceptual effects. Especially the concept of the perceptual mixing time and manipulated spatiotemporal patterns of early reflections served as test cases. The results reveal a high potential for simplification but also underline the relevance of accurately imitating prominent early reflections. The findings confirm the concept of the perceptual mixing time for the considered cases of position-dynamic binaural audio. The observations highlight that common test scenarios for dynamic binaural rendering approaches are not sufficiently critical to draw general conclusions about their suitability. This thesis proposes strategies to solve this

    Technology 2003: The Fourth National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings from symposia of the Technology 2003 Conference and Exposition, Dec. 7-9, 1993, Anaheim, CA, are presented. Volume 2 features papers on artificial intelligence, CAD&E, computer hardware, computer software, information management, photonics, robotics, test and measurement, video and imaging, and virtual reality/simulation

    Proceedings of the 6th international conference on disability, virtual reality and associated technologies (ICDVRAT 2006)

    Get PDF
    The proceedings of the conferenc

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Sonic interactions in virtual environments

    Get PDF
    This book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments
    • …
    corecore