673 research outputs found

    Semantic Optimization in Tractable Classes of Conjunctive Queries

    Get PDF
    This paper reports on recent advances in semantic query optimization. We focus on the core class of conjunctive queries (CQs). Since CQ evaluation is NP-complete, a long line of research has concentrated on identifying fragments of CQs that can be efficiently evaluated. One of the most general such restrictions corresponds to bounded generalized hypertreewidth, which extends the notion of acyclicity. Here we discuss the problem of reformulating a CQ into one of bounded generalized hypertreewidth. Furthermore, we study whether knowing that such a reformulation exists alleviates the cost of CQ evaluation. In case a CQ cannot be reformulated as one of bounded generalized hypertreewidth, we discuss how it can be approximated in an optimal way. All the above issues are examined both for the constraint-free case, and the case where constraints, in fact, tuple-generating and equality-generating dependencies, are present.Millennium Nucleus Center for Semantic Web Research NC120004 EPSRC Programme EP/M025268

    Using Ontologies for Semantic Data Integration

    Get PDF
    While big data analytics is considered as one of the most important paths to competitive advantage of today’s enterprises, data scientists spend a comparatively large amount of time in the data preparation and data integration phase of a big data project. This shows that data integration is still a major challenge in IT applications. Over the past two decades, the idea of using semantics for data integration has become increasingly crucial, and has received much attention in the AI, database, web, and data mining communities. Here, we focus on a specific paradigm for semantic data integration, called Ontology-Based Data Access (OBDA). The goal of this paper is to provide an overview of OBDA, pointing out both the techniques that are at the basis of the paradigm, and the main challenges that remain to be addressed

    Tractable Query Answering and Optimization for Extensions of Weakly-Sticky Datalog+-

    Full text link
    We consider a semantic class, weakly-chase-sticky (WChS), and a syntactic subclass, jointly-weakly-sticky (JWS), of Datalog+- programs. Both extend that of weakly-sticky (WS) programs, which appear in our applications to data quality. For WChS programs we propose a practical, polynomial-time query answering algorithm (QAA). We establish that the two classes are closed under magic-sets rewritings. As a consequence, QAA can be applied to the optimized programs. QAA takes as inputs the program (including the query) and semantic information about the "finiteness" of predicate positions. For the syntactic subclasses JWS and WS of WChS, this additional information is computable.Comment: To appear in Proc. Alberto Mendelzon WS on Foundations of Data Management (AMW15

    An Analytical Study of Large SPARQL Query Logs

    Full text link
    With the adoption of RDF as the data model for Linked Data and the Semantic Web, query specification from end- users has become more and more common in SPARQL end- points. In this paper, we conduct an in-depth analytical study of the queries formulated by end-users and harvested from large and up-to-date query logs from a wide variety of RDF data sources. As opposed to previous studies, ours is the first assessment on a voluminous query corpus, span- ning over several years and covering many representative SPARQL endpoints. Apart from the syntactical structure of the queries, that exhibits already interesting results on this generalized corpus, we drill deeper in the structural char- acteristics related to the graph- and hypergraph represen- tation of queries. We outline the most common shapes of queries when visually displayed as pseudographs, and char- acterize their (hyper-)tree width. Moreover, we analyze the evolution of queries over time, by introducing the novel con- cept of a streak, i.e., a sequence of queries that appear as subsequent modifications of a seed query. Our study offers several fresh insights on the already rich query features of real SPARQL queries formulated by real users, and brings us to draw a number of conclusions and pinpoint future di- rections for SPARQL query evaluation, query optimization, tuning, and benchmarking

    Ontology-Based Data Access and Integration

    Get PDF
    An ontology-based data integration (OBDI) system is an information management system consisting of three components: an ontology, a set of data sources, and the mapping between the two. The ontology is a conceptual, formal description of the domain of interest to a given organization (or a community of users), expressed in terms of relevant concepts, attributes of concepts, relationships between concepts, and logical assertions characterizing the domain knowledge. The data sources are the repositories accessible by the organization where data concerning the domain are stored. In the general case, such repositories are numerous, heterogeneous, each one managed and maintained independently from the others. The mapping is a precise specification of the correspondence between the data contained in the data sources and the elements of the ontology. The main purpose of an OBDI system is to allow information consumers to query the data using the elements in the ontology as predicates. In the special case where the organization manages a single data source, the term ontology-based data access (ODBA) system is used

    Query Rewriting and Optimization for Ontological Databases

    Full text link
    Ontological queries are evaluated against a knowledge base consisting of an extensional database and an ontology (i.e., a set of logical assertions and constraints which derive new intensional knowledge from the extensional database), rather than directly on the extensional database. The evaluation and optimization of such queries is an intriguing new problem for database research. In this paper, we discuss two important aspects of this problem: query rewriting and query optimization. Query rewriting consists of the compilation of an ontological query into an equivalent first-order query against the underlying extensional database. We present a novel query rewriting algorithm for rather general types of ontological constraints which is well-suited for practical implementations. In particular, we show how a conjunctive query against a knowledge base, expressed using linear and sticky existential rules, that is, members of the recently introduced Datalog+/- family of ontology languages, can be compiled into a union of conjunctive queries (UCQ) against the underlying database. Ontological query optimization, in this context, attempts to improve this rewriting process so to produce possibly small and cost-effective UCQ rewritings for an input query.Comment: arXiv admin note: text overlap with arXiv:1312.5914 by other author
    • …
    corecore