30,582 research outputs found

    Semantic memory modeling and memory interaction in learning agents

    Get PDF

    Towards Learning ‘Self’ and Emotional Knowledge in Social and Cultural Human-Agent Interactions

    Get PDF
    Original article can be found at: http://www.igi-global.com/articles/details.asp?ID=35052 Copyright IGI. Posted by permission of the publisher.This article presents research towards the development of a virtual learning environment (VLE) inhabited by intelligent virtual agents (IVAs) and modeling a scenario of inter-cultural interactions. The ultimate aim of this VLE is to allow users to reflect upon and learn about intercultural communication and collaboration. Rather than predefining the interactions among the virtual agents and scripting the possible interactions afforded by this environment, we pursue a bottomup approach whereby inter-cultural communication emerges from interactions with and among autonomous agents and the user(s). The intelligent virtual agents that are inhabiting this environment are expected to be able to broaden their knowledge about the world and other agents, which may be of different cultural backgrounds, through interactions. This work is part of a collaborative effort within a European research project called eCIRCUS. Specifically, this article focuses on our continuing research concerned with emotional knowledge learning in autobiographic social agents.Peer reviewe

    The Role of Consciousness in Memory

    Get PDF
    Conscious events interact with memory systems in learning, rehearsal and retrieval (Ebbinghaus 1885/1964; Tulving 1985). Here we present hypotheses that arise from the IDA computional model (Franklin, Kelemen and McCauley 1998; Franklin 2001b) of global workspace theory (Baars 1988, 2002). Our primary tool for this exploration is a flexible cognitive cycle employed by the IDA computational model and hypothesized to be a basic element of human cognitive processing. Since cognitive cycles are hypothesized to occur five to ten times a second and include interaction between conscious contents and several of the memory systems, they provide the means for an exceptionally fine-grained analysis of various cognitive tasks. We apply this tool to the small effect size of subliminal learning compared to supraliminal learning, to process dissociation, to implicit learning, to recognition vs. recall, and to the availability heuristic in recall. The IDA model elucidates the role of consciousness in the updating of perceptual memory, transient episodic memory, and procedural memory. In most cases, memory is hypothesized to interact with conscious events for its normal functioning. The methodology of the paper is unusual in that the hypotheses and explanations presented are derived from an empirically based, but broad and qualitative computational model of human cognition

    Higher-level Knowledge, Rational and Social Levels Constraints of the Common Model of the Mind

    Get PDF
    In his famous 1982 paper, Allen Newell [22, 23] introduced the notion of knowledge level to indicate a level of analysis, and prediction, of the rational behavior of a cognitive articial agent. This analysis concerns the investigation about the availability of the agent knowledge, in order to pursue its own goals, and is based on the so-called Rationality Principle (an assumption according to which "an agent will use the knowledge it has of its environment to achieve its goals" [22, p. 17]. By using the Newell's own words: "To treat a system at the knowledge level is to treat it as having some knowledge, some goals, and believing it will do whatever is within its power to attain its goals, in so far as its knowledge indicates" [22, p. 13]. In the last decades, the importance of the knowledge level has been historically and system- atically downsized by the research area in cognitive architectures (CAs), whose interests have been mainly focused on the analysis and the development of mechanisms and the processes governing human and (articial) cognition. The knowledge level in CAs, however, represents a crucial level of analysis for the development of such articial general systems and therefore deserves greater research attention [17]. In the following, we will discuss areas of broad agree- ment and outline the main problematic aspects that should be faced within a Common Model of Cognition [12]. Such aspects, departing from an analysis at the knowledge level, also clearly impact both lower (e.g. representational) and higher (e.g. social) levels

    What does semantic tiling of the cortex tell us about semantics?

    Get PDF
    Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the cortex. Although this impressive research establishes distributed cortical areas active during the conceptual processing that underlies semantics, it tells us little about the nature of this processing. While mapping concepts between Marr's computational and implementation levels to support neural encoding and decoding, this approach ignores Marr's algorithmic level, central for understanding the mechanisms that implement cognition, in general, and conceptual processing, in particular. Following decades of research in cognitive science and neuroscience, what do we know so far about the representation and processing mechanisms that implement conceptual abilities? Most basically, much is known about the mechanisms associated with: (1) features and frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based inference, (4) concept composition, and (5) conceptual flexibility. Rather than explaining these fundamental representation and processing mechanisms, semantic tiles simply provide a trace of their activity over a relatively short time period within a specific learning context. Establishing the mechanisms that implement conceptual processing in the brain will require more than mapping it to cortical (and sub-cortical) activity, with process models from cognitive science likely to play central roles in specifying the intervening mechanisms. More generally, neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that contribute essential explanations to how the brain works, going beyond simply establishing the brain areas that respond to various task conditions
    • 

    corecore