60,953 research outputs found

    A Framework for Semantic Interoperability for Distributed Geospatial Repositories

    Get PDF
    Interoperable access of geospatial information across disparate geospatial applications has become essential. Geospatial data are highly heterogeneous -- the heterogeneity arises both at the syntactic and semantic levels. Finding and accessing appropriate data in such a distributed environment is an important research issue. The paper proposes a methodology for interoperable access of geospatial information based on Open Geospatial Consortium (OGC) specified standards. An architecture for integrating diverse geospatial data repositories has been proposed using service-based methodology. The semantic issues for discovery and retrieval of geospatial data over distributed geospatial services have also been proposed in the paper. The proposed architecture utilizes the ontological concepts for service description and subsequent discovery of services. An approach for semantic similarity assessment of geospatial services has been discussed

    Distributed Denial of Service Attack Detection

    Get PDF
    Distributed Denial of Service (DDoS) attacks on web applications has been a persistent threat. Successful attacks can lead to inaccessible service to legitimate users in time and loss of business reputation. Most research effort on DDoS focused on network layer attacks. Existing approaches on application layer DDoS attack mitigation have limitations such as the lack of detection ability for low rate DDoS and not being able to detect attacks targeting resource files. In this work, we propose DDoS attack detection using concepts from information retrieval and machine learning. We include two popular concepts from information retrieval: Term Frequency (TF)-Inverse Document Frequency (IDF) and Latent Semantic Indexing (LSI). We analyzed web server log data generated in a distributed environment. Our evaluation results indicate that while all the approaches can detect various ranges of attacks, information retrieval approaches can identify attacks ongoing in a given session. All the approaches can detect three well known application level DDoS attacks (trivial, intermediate, advanced). Further, these approaches can enable an administrator identifying new pattern of DDoS attacks

    A scalable approach for content based image retrieval in cloud datacenter

    Get PDF
    The emergence of cloud datacenters enhances the capability of online data storage. Since massive data is stored in datacenters, it is necessary to effectively locate and access interest data in such a distributed system. However, traditional search techniques only allow users to search images over exact-match keywords through a centralized index. These techniques cannot satisfy the requirements of content based image retrieval (CBIR). In this paper, we propose a scalable image retrieval framework which can efficiently support content similarity search and semantic search in the distributed environment. Its key idea is to integrate image feature vectors into distributed hash tables (DHTs) by exploiting the property of locality sensitive hashing (LSH). Thus, images with similar content are most likely gathered into the same node without the knowledge of any global information. For searching semantically close images, the relevance feedback is adopted in our system to overcome the gap between low-level features and high-level features. We show that our approach yields high recall rate with good load balance and only requires a few number of hops

    Footprints of information foragers: Behaviour semantics of visual exploration

    Get PDF
    Social navigation exploits the knowledge and experience of peer users of information resources. A wide variety of visual–spatial approaches become increasingly popular as a means to optimize information access as well as to foster and sustain a virtual community among geographically distributed users. An information landscape is among the most appealing design options of representing and communicating the essence of distributed information resources to users. A fundamental and challenging issue is how an information landscape can be designed such that it will not only preserve the essence of the underlying information structure, but also accommodate the diversity of individual users. The majority of research in social navigation has been focusing on how to extract useful information from what is in common between users' profiles, their interests and preferences. In this article, we explore the role of modelling sequential behaviour patterns of users in augmenting social navigation in thematic landscapes. In particular, we compare and analyse the trails of individual users in thematic spaces along with their cognitive ability measures. We are interested in whether such trails can provide useful guidance for social navigation if they are embedded in a visual–spatial environment. Furthermore, we are interested in whether such information can help users to learn from each other, for example, from the ones who have been successful in retrieving documents. In this article, we first describe how users' trails in sessions of an experimental study of visual information retrieval can be characterized by Hidden Markov Models. Trails of users with the most successful retrieval performance are used to estimate parameters of such models. Optimal virtual trails generated from the models are visualized and animated as if they were actual trails of individual users in order to highlight behavioural patterns that may foster social navigation. The findings of the research will provide direct input to the design of social navigation systems as well as to enrich theories of social navigation in a wider context. These findings will lead to the further development and consolidation of a tightly coupled paradigm of spatial, semantic and social navigation

    A MapReduce Based Distributed LSI for Scalable Information Retrieval

    Get PDF
    Latent Semantic Indexing (LSI) has been widely used in information retrieval due to its efficiency in solving the problems of polysemy and synonymy. However, LSI is notably a computationally intensive process because of the computing complexities of singular value decomposition and filtering operations involved in the process. This paper presents MR-LSI, a MapReduce based distributed LSI algorithm for scalable information retrieval. The performance of MR-LSI is first evaluated in a small scale experimental cluster environment, and subsequently evaluated in large scale simulation environments. By partitioning the dataset into smaller subsets and optimizing the partitioned subsets across a cluster of computing nodes, the overhead of the MR-LSI algorithm is reduced significantly while maintaining a high level of accuracy in retrieving documents of user interest. A genetic algorithm based load balancing scheme is designed to optimize the performance of MR-LSI in heterogeneous computing environments in which the computing nodes have varied resources

    Improving Knowledge Retrieval in Digital Libraries Applying Intelligent Techniques

    Get PDF
    Nowadays an enormous quantity of heterogeneous and distributed information is stored in the digital University. Exploring online collections to find knowledge relevant to a user’s interests is a challenging work. The artificial intelligence and Semantic Web provide a common framework that allows knowledge to be shared and reused in an efficient way. In this work we propose a comprehensive approach for discovering E-learning objects in large digital collections based on analysis of recorded semantic metadata in those objects and the application of expert system technologies. We have used Case Based-Reasoning methodology to develop a prototype for supporting efficient retrieval knowledge from online repositories. We suggest a conceptual architecture for a semantic search engine. OntoUS is a collaborative effort that proposes a new form of interaction between users and digital libraries, where the latter are adapted to users and their surroundings

    Context-Aware Information Retrieval for Enhanced Situation Awareness

    No full text
    In the coalition forces, users are increasingly challenged with the issues of information overload and correlation of information from heterogeneous sources. Users might need different pieces of information, ranging from information about a single building, to the resolution strategy of a global conflict. Sometimes, the time, location and past history of information access can also shape the information needs of users. Information systems need to help users pull together data from disparate sources according to their expressed needs (as represented by system queries), as well as less specific criteria. Information consumers have varying roles, tasks/missions, goals and agendas, knowledge and background, and personal preferences. These factors can be used to shape both the execution of user queries and the form in which retrieved information is packaged. However, full automation of this daunting information aggregation and customization task is not possible with existing approaches. In this paper we present an infrastructure for context-aware information retrieval to enhance situation awareness. The infrastructure provides each user with a customized, mission-oriented system that gives access to the right information from heterogeneous sources in the context of a particular task, plan and/or mission. The approach lays on five intertwined fundamental concepts, namely Workflow, Context, Ontology, Profile and Information Aggregation. The exploitation of this knowledge, using appropriate domain ontologies, will make it feasible to provide contextual assistance in various ways to the work performed according to a user’s taskrelevant information requirements. This paper formalizes these concepts and their interrelationships

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web
    • 

    corecore