963 research outputs found

    Speech data analysis for semantic indexing of video of simulated medical crises.

    Get PDF
    The Simulation for Pediatric Assessment, Resuscitation, and Communication (SPARC) group within the Department of Pediatrics at the University of Louisville, was established to enhance the care of children by using simulation based educational methodologies to improve patient safety and strengthen clinician-patient interactions. After each simulation session, the physician must manually review and annotate the recordings and then debrief the trainees. The physician responsible for the simulation has recorded 100s of videos, and is seeking solutions that can automate the process. This dissertation introduces our developed system for efficient segmentation and semantic indexing of videos of medical simulations using machine learning methods. It provides the physician with automated tools to review important sections of the simulation by identifying who spoke, when and what was his/her emotion. Only audio information is extracted and analyzed because the quality of the image recording is low and the visual environment is static for most parts. Our proposed system includes four main components: preprocessing, speaker segmentation, speaker identification, and emotion recognition. The preprocessing consists of first extracting the audio component from the video recording. Then, extracting various low-level audio features to detect and remove silence segments. We investigate and compare two different approaches for this task. The first one is threshold-based and the second one is classification-based. The second main component of the proposed system consists of detecting speaker changing points for the purpose of segmenting the audio stream. We propose two fusion methods for this task. The speaker identification and emotion recognition components of our system are designed to provide users the capability to browse the video and retrieve shots that identify ”who spoke, when, and the speaker’s emotion” for further analysis. For this component, we propose two feature representation methods that map audio segments of arbitary length to a feature vector with fixed dimensions. The first one is based on soft bag-of-word (BoW) feature representations. In particular, we define three types of BoW that are based on crisp, fuzzy, and possibilistic voting. The second feature representation is a generalization of the BoW and is based on Fisher Vector (FV). FV uses the Fisher Kernel principle and combines the benefits of generative and discriminative approaches. The proposed feature representations are used within two learning frameworks. The first one is supervised learning and assumes that a large collection of labeled training data is available. Within this framework, we use standard classifiers including K-nearest neighbor (K-NN), support vector machine (SVM), and Naive Bayes. The second framework is based on semi-supervised learning where only a limited amount of labeled training samples are available. We use an approach that is based on label propagation. Our proposed algorithms were evaluated using 15 medical simulation sessions. The results were analyzed and compared to those obtained using state-of-the-art algorithms. We show that our proposed speech segmentation fusion algorithms and feature mappings outperform existing methods. We also integrated all proposed algorithms and developed a GUI prototype system for subjective evaluation. This prototype processes medical simulation video and provides the user with a visual summary of the different speech segments. It also allows the user to browse videos and retrieve scenes that provide answers to semantic queries such as: who spoke and when; who interrupted who? and what was the emotion of the speaker? The GUI prototype can also provide summary statistics of each simulation video. Examples include: for how long did each person spoke? What is the longest uninterrupted speech segment? Is there an unusual large number of pauses within the speech segment of a given speaker

    Design of an E-learning system using semantic information and cloud computing technologies

    Get PDF
    Humanity is currently suffering from many difficult problems that threaten the life and survival of the human race. It is very easy for all mankind to be affected, directly or indirectly, by these problems. Education is a key solution for most of them. In our thesis we tried to make use of current technologies to enhance and ease the learning process. We have designed an e-learning system based on semantic information and cloud computing, in addition to many other technologies that contribute to improving the educational process and raising the level of students. The design was built after much research on useful technology, its types, and examples of actual systems that were previously discussed by other researchers. In addition to the proposed design, an algorithm was implemented to identify topics found in large textual educational resources. It was tested and proved to be efficient against other methods. The algorithm has the ability of extracting the main topics from textual learning resources, linking related resources and generating interactive dynamic knowledge graphs. This algorithm accurately and efficiently accomplishes those tasks even for bigger books. We used Wikipedia Miner, TextRank, and Gensim within our algorithm. Our algorithm‘s accuracy was evaluated against Gensim, largely improving its accuracy. Augmenting the system design with the implemented algorithm will produce many useful services for improving the learning process such as: identifying main topics of big textual learning resources automatically and connecting them to other well defined concepts from Wikipedia, enriching current learning resources with semantic information from external sources, providing student with browsable dynamic interactive knowledge graphs, and making use of learning groups to encourage students to share their learning experiences and feedback with other learners.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Luis Sánchez Fernández.- Secretario: Luis de la Fuente Valentín.- Vocal: Norberto Fernández Garcí

    A framework for cardio-pulmonary resuscitation (CPR) scene retrieval from medical simulation videos based on object and activity detection.

    Get PDF
    In this thesis, we propose a framework to detect and retrieve CPR activity scenes from medical simulation videos. Medical simulation is a modern training method for medical students, where an emergency patient condition is simulated on human-like mannequins and the students act upon. These simulation sessions are recorded by the physician, for later debriefing. With the increasing number of simulation videos, automatic detection and retrieval of specific scenes became necessary. The proposed framework for CPR scene retrieval, would eliminate the conventional approach of using shot detection and frame segmentation techniques. Firstly, our work explores the application of Histogram of Oriented Gradients in three dimensions (HOG3D) to retrieve the scenes containing CPR activity. Secondly, we investigate the use of Local Binary Patterns in Three Orthogonal Planes (LBPTOP), which is the three dimensional extension of the popular Local Binary Patterns. This technique is a robust feature that can detect specific activities from scenes containing multiple actors and activities. Thirdly, we propose an improvement to the above mentioned methods by a combination of HOG3D and LBP-TOP. We use decision level fusion techniques to combine the features. We prove experimentally that the proposed techniques and their combination out-perform the existing system for CPR scene retrieval. Finally, we devise a method to detect and retrieve the scenes containing the breathing bag activity, from the medical simulation videos. The proposed framework is tested and validated using eight medical simulation videos and the results are presented

    Discourses, Modes, Media and Meaning in an Era of Pandemic

    Get PDF
    The COVID-19 pandemic has affected all aspects of our everyday lives – from the political to the economic to the social. Using a multimodal discourse analysis approach, this dynamic collection examines various discourses, modes and media in circulation during the early stages of the pandemic, and how these have impacted our daily lives in terms of the various meanings they express. Examples include how national and international news organisations communicate important information about the virus and the crisis, the public’s reactions to such communications, the resultant (counter-)discourses as manifested in social media posts and memes, as well as the impact social distancing policies and mobility restrictions have had on people’s communication and interaction practices. The book offers a synoptic view of how the pandemic was communicated, represented and (re-)contextualised across different spheres, and ultimately hopes to help account for the significant changes we are continuing to witness in our everyday lives as the pandemic unfolds. This volume will appeal primarily to scholars in the field of (multimodal) discourse analysis. It will also be of interest to researchers and graduate students in other fields whose work focuses on the use of multimodal artefacts for communication and meaning making

    Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement

    Get PDF
    Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method

    Discourses, Modes, Media and Meaning in an Era of Pandemic

    Get PDF
    The COVID-19 pandemic has affected all aspects of our everyday lives – from the political to the economic to the social. Using a multimodal discourse analysis approach, this dynamic collection examines various discourses, modes and media in circulation during the early stages of the pandemic, and how these have impacted our daily lives in terms of the various meanings they express. Examples include how national and international news organisations communicate important information about the virus and the crisis, the public’s reactions to such communications, the resultant (counter-)discourses as manifested in social media posts and memes, as well as the impact social distancing policies and mobility restrictions have had on people’s communication and interaction practices. The book offers a synoptic view of how the pandemic was communicated, represented and (re-)contextualised across different spheres, and ultimately hopes to help account for the significant changes we are continuing to witness in our everyday lives as the pandemic unfolds. This volume will appeal primarily to scholars in the field of (multimodal) discourse analysis. It will also be of interest to researchers and graduate students in other fields whose work focuses on the use of multimodal artefacts for communication and meaning making

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe
    corecore