118,929 research outputs found

    Uncovering Meanings of Embeddings via Partial Orthogonality

    Full text link
    Machine learning tools often rely on embedding text as vectors of real numbers. In this paper, we study how the semantic structure of language is encoded in the algebraic structure of such embeddings. Specifically, we look at a notion of ``semantic independence'' capturing the idea that, e.g., ``eggplant'' and ``tomato'' are independent given ``vegetable''. Although such examples are intuitive, it is difficult to formalize such a notion of semantic independence. The key observation here is that any sensible formalization should obey a set of so-called independence axioms, and thus any algebraic encoding of this structure should also obey these axioms. This leads us naturally to use partial orthogonality as the relevant algebraic structure. We develop theory and methods that allow us to demonstrate that partial orthogonality does indeed capture semantic independence. Complementary to this, we also introduce the concept of independence preserving embeddings where embeddings preserve the conditional independence structures of a distribution, and we prove the existence of such embeddings and approximations to them

    Non-Strict Independence-Based Program Parallelization Using Sharing and Freeness Information.

    Get PDF
    The current ubiquity of multi-core processors has brought renewed interest in program parallelization. Logic programs allow studying the parallelization of programs with complex, dynamic data structures with (declarative) pointers in a comparatively simple semantic setting. In this context, automatic parallelizers which exploit and-parallelism rely on notions of independence in order to ensure certain efficiency properties. “Non-strict” independence is a more relaxed notion than the traditional notion of “strict” independence which still ensures the relevant efficiency properties and can allow considerable more parallelism. Non-strict independence cannot be determined solely at run-time (“a priori”) and thus global analysis is a requirement. However, extracting non-strict independence information from available analyses and domains is non-trivial. This paper provides on one hand an extended presentation of our classic techniques for compile-time detection of non-strict independence based on extracting information from (abstract interpretation-based) analyses using the now well understood and popular Sharing + Freeness domain. This includes algorithms for combined compile-time/run-time detection which involve special run-time checks for this type of parallelism. In addition, we propose herein novel annotation (parallelization) algorithms, URLP and CRLP, which are specially suited to non-strict independence. We also propose new ways of using the Sharing + Freeness information to optimize how the run-time environments of goals are kept apart during parallel execution. Finally, we also describe the implementation of these techniques in our parallelizing compiler and recall some early performance results. We provide as well an extended description of our pictorial representation of sharing and freeness information

    Where there is life there is mind: In support of a strong life-mind continuity thesis

    Get PDF
    This paper considers questions about continuity and discontinuity between life and mind. It begins by examining such questions from the perspective of the free energy principle (FEP). The FEP is becoming increasingly influential in neuroscience and cognitive science. It says that organisms act to maintain themselves in their expected biological and cognitive states, and that they can do so only by minimizing their free energy given that the long-term average of free energy is entropy. The paper then argues that there is no singular interpretation of the FEP for thinking about the relation between life and mind. Some FEP formulations express what we call an independence view of life and mind. One independence view is a cognitivist view of the FEP. It turns on information processing with semantic content, thus restricting the range of systems capable of exhibiting mentality. Other independence views exemplify what we call an overly generous non-cognitivist view of the FEP, and these appear to go in the opposite direction. That is, they imply that mentality is nearly everywhere. The paper proceeds to argue that non-cognitivist FEP, and its implications for thinking about the relation between life and mind, can be usefully constrained by key ideas in recent enactive approaches to cognitive science. We conclude that the most compelling account of the relationship between life and mind treats them as strongly continuous, and that this continuity is based on particular concepts of life (autopoiesis and adaptivity) and mind (basic and non-semantic)

    Коалгебраическое исследование бисимуляционных паралельных процессов

    Get PDF
    The aim of this paper is to extend of coalgebra semantic and categorical methods to noninterleaving models, in particular, transition systems with independence and labelled event structure
    corecore