90,659 research outputs found

    Improving Semantic Segmentation of 3D Medical Images on CNNs

    Get PDF
    International audienceA neural network is a mathematical model that is able to perform a task automatically or semi-automatically after learning the human knowledge that we provided. Moreover, a Convolutional Neural Network (CNN) is a type of neural network that has shown to efficiently learn tasks related to the area of image analysis, such as image segmentation, whose main purpose is to find regions or separable objects within an image. A more specific type of segmentation, called semantic segmentation, guarantees that each region has a semantic meaning by giving it a label or class. Since CNNs can automate the task of image semantic segmentation, they have been very useful for the medical area, applying them to the segmentation of organs or abnormalities (tumors). This work aims to improve the task of binary semantic segmentation of volumetric medical images acquired by Magnetic Resonance Imaging (MRI) using a pre-existing Three-Dimensional Convolutional Neural Network (3D CNN) architecture. We propose a formulation of a loss function for training this 3D CNN, for improving pixel-wise segmentation results. This loss function is formulated based on the idea of adapting a similarity coefficient, used for measuring the spatial overlap between the prediction and ground truth, and then using it to train the network. As contribution, the developed approach achieved good performance in a context where the pixel classes are imbalanced. We show how the choice of the loss function for training can affect the final quality of the segmentation. We validate our proposal over two medical image semantic segmentation datasets and show comparisons in performance between the proposed loss function and other pre-existing loss functions used for binary semantic segmentation

    Machine Learning in Medical Image Analysis

    Get PDF
    Machine learning is playing a pivotal role in medical image analysis. Many algorithms based on machine learning have been applied in medical imaging to solve classification, detection, and segmentation problems. Particularly, with the wide application of deep learning approaches, the performance of medical image analysis has been significantly improved. In this thesis, we investigate machine learning methods for two key challenges in medical image analysis: The first one is segmentation of medical images. The second one is learning with weak supervision in the context of medical imaging. The first main contribution of the thesis is a series of novel approaches for image segmentation. First, we propose a framework based on multi-scale image patches and random forests to segment small vessel disease (SVD) lesions on computed tomography (CT) images. This framework is validated in terms of spatial similarity, estimated lesion volumes, visual score ratings and was compared with human experts. The results showed that the proposed framework performs as well as human experts. Second, we propose a generic convolutional neural network (CNN) architecture called the DRINet for medical image segmentation. The DRINet approach is robust in three different types of segmentation tasks, which are multi-class cerebrospinal fluid (CSF) segmentation on brain CT images, multi-organ segmentation on abdomen CT images, and multi-class tumour segmentation on brain magnetic resonance (MR) images. Finally, we propose a CNN-based framework to segment acute ischemic lesions on diffusion weighted (DW)-MR images, where the lesions are highly variable in terms of position, shape, and size. Promising results were achieved on a large clinical dataset. The second main contribution of the thesis is two novel strategies for learning with weak supervision. First, we propose a novel strategy called context restoration to make use of the images without annotations. The context restoration strategy is a proxy learning process based on the CNN, which extracts semantic features from images without using annotations. It was validated on classification, localization, and segmentation problems and was superior to existing strategies. Second, we propose a patch-based framework using multi-instance learning to distinguish normal and abnormal SVD on CT images, where there are only coarse-grained labels available. Our framework was observed to work better than classic methods and clinical practice.Open Acces

    Exploring Context with Deep Structured models for Semantic Segmentation

    Full text link
    State-of-the-art semantic image segmentation methods are mostly based on training deep convolutional neural networks (CNNs). In this work, we proffer to improve semantic segmentation with the use of contextual information. In particular, we explore `patch-patch' context and `patch-background' context in deep CNNs. We formulate deep structured models by combining CNNs and Conditional Random Fields (CRFs) for learning the patch-patch context between image regions. Specifically, we formulate CNN-based pairwise potential functions to capture semantic correlations between neighboring patches. Efficient piecewise training of the proposed deep structured model is then applied in order to avoid repeated expensive CRF inference during the course of back propagation. For capturing the patch-background context, we show that a network design with traditional multi-scale image inputs and sliding pyramid pooling is very effective for improving performance. We perform comprehensive evaluation of the proposed method. We achieve new state-of-the-art performance on a number of challenging semantic segmentation datasets including NYUDv2NYUDv2, PASCALPASCAL-VOC2012VOC2012, CityscapesCityscapes, PASCALPASCAL-ContextContext, SUNSUN-RGBDRGBD, SIFTSIFT-flowflow, and KITTIKITTI datasets. Particularly, we report an intersection-over-union score of 77.877.8 on the PASCALPASCAL-VOC2012VOC2012 dataset.Comment: 16 pages. Accepted to IEEE T. Pattern Analysis & Machine Intelligence, 2017. Extended version of arXiv:1504.0101

    A Survey on Deep Learning-based Architectures for Semantic Segmentation on 2D images

    Full text link
    Semantic segmentation is the pixel-wise labelling of an image. Since the problem is defined at the pixel level, determining image class labels only is not acceptable, but localising them at the original image pixel resolution is necessary. Boosted by the extraordinary ability of convolutional neural networks (CNN) in creating semantic, high level and hierarchical image features; excessive numbers of deep learning-based 2D semantic segmentation approaches have been proposed within the last decade. In this survey, we mainly focus on the recent scientific developments in semantic segmentation, specifically on deep learning-based methods using 2D images. We started with an analysis of the public image sets and leaderboards for 2D semantic segmantation, with an overview of the techniques employed in performance evaluation. In examining the evolution of the field, we chronologically categorised the approaches into three main periods, namely pre-and early deep learning era, the fully convolutional era, and the post-FCN era. We technically analysed the solutions put forward in terms of solving the fundamental problems of the field, such as fine-grained localisation and scale invariance. Before drawing our conclusions, we present a table of methods from all mentioned eras, with a brief summary of each approach that explains their contribution to the field. We conclude the survey by discussing the current challenges of the field and to what extent they have been solved.Comment: Updated with new studie

    DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

    Get PDF
    In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7% mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.Comment: Accepted by TPAM
    • …
    corecore