127,865 research outputs found

    Propagators and Solvers for the Algebra of Modular Systems

    Full text link
    To appear in the proceedings of LPAR 21. Solving complex problems can involve non-trivial combinations of distinct knowledge bases and problem solvers. The Algebra of Modular Systems is a knowledge representation framework that provides a method for formally specifying such systems in purely semantic terms. Formally, an expression of the algebra defines a class of structures. Many expressive formalism used in practice solve the model expansion task, where a structure is given on the input and an expansion of this structure in the defined class of structures is searched (this practice overcomes the common undecidability problem for expressive logics). In this paper, we construct a solver for the model expansion task for a complex modular systems from an expression in the algebra and black-box propagators or solvers for the primitive modules. To this end, we define a general notion of propagators equipped with an explanation mechanism, an extension of the alge- bra to propagators, and a lazy conflict-driven learning algorithm. The result is a framework for seamlessly combining solving technology from different domains to produce a solver for a combined system.Comment: To appear in the proceedings of LPAR 2

    Knowledge Dynamics: Exploring its Meanings and Interpretations

    Get PDF
    In the literature there are many and different interpretations of the concept knowledge dynamics that creates a real difficulty in working with it. There is no comprehensive study of all these meanings and interpretations attributed to knowledge dynamics. The purpose of this paper is to explore the semantic spectrum of the concept of knowledge dynamics and to reveal the most relevant meanings and interpretations researchers in the domain of knowledge management attribute to it. The multitude of meanings and interpretations can be explained as a result of using different metaphors for expressing the concept of knowledge. Also, many researchers come from different domains of science and have different practical experiences in working with knowledge and knowledge management. The research question is how can be found a common framework to explain the most significant meanings and interpretations of the knowledge dynamics concept. Understanding this concept is necessary for all researchers, academics, and practitioners working in the domain of knowledge management and intellectual capital. The research method is based on a critical literature review, on using metaphorical thinking and on a comparative semantic analysis. It is a conceptual paper and therefore its structure will follow the logic of analysis and not that used for empirical research papers. The findings are integrated into a complex but coherent semantic framework based on both Newtonian and Thermodynamics principles

    Ontology modelling methodology for temporal and interdependent applications

    Get PDF
    The increasing adoption of Semantic Web technology by several classes of applications in recent years, has made ontology engineering a crucial part of application development. Nowadays, the abundant accessibility of interdependent information from multiple resources and representing various fields such as health, transport, and banking etc., further evidence the growing need for utilising ontology for the development of Web applications. While there have been several advances in the adoption of the ontology for application development, less emphasis is being made on the modelling methodologies for representing modern-day application that are characterised by the temporal nature of the data they process, which is captured from multiple sources. Taking into account the benefits of a methodology in the system development, we propose a novel methodology for modelling ontologies representing Context-Aware Temporal and Interdependent Systems (CATIS). CATIS is an ontology development methodology for modelling temporal interdependent applications in order to achieve the desired results when modelling sophisticated applications with temporal and inter dependent attributes to suit today's application requirements

    From Affective Science to Psychiatric Disorder: Ontology as Semantic Bridge

    Get PDF
    Advances in emotion and affective science have yet to translate routinely into psychiatric research and practice. This is unfortunate since emotion and affect are fundamental components of many psychiatric conditions. Rectifying this lack of interdisciplinary integration could thus be a potential avenue for improving psychiatric diagnosis and treatment. In this contribution, we propose and discuss an ontological framework for explicitly capturing the complex interrelations between affective entities and psychiatric disorders, in order to facilitate mapping and integration between affective science and psychiatric diagnostics. We build on and enhance the categorisation of emotion, affect and mood within the previously developed Emotion Ontology, and that of psychiatric disorders in the Mental Disease Ontology. This effort further draws on developments in formal ontology regarding the distinction between normal and abnormal in order to formalize the interconnections. This operational semantic framework is relevant for applications including clarifying psychiatric diagnostic categories, clinical information systems, and the integration and translation of research results across disciplines

    BIM semantic-enrichment for built heritage representation

    Get PDF
    In the built heritage context, BIM has shown difficulties in representing and managing the large and complex knowledge related to non-geometrical aspects of the heritage. Within this scope, this paper focuses on a domain-specific semantic-enrichment of BIM methodology, aimed at fulfilling semantic representation requirements of built heritage through Semantic Web technologies. To develop this semantic-enriched BIM approach, this research relies on the integration of a BIM environment with a knowledge base created through information ontologies. The result is knowledge base system - and a prototypal platform - that enhances semantic representation capabilities of BIM application to architectural heritage processes. It solves the issue of knowledge formalization in cultural heritage informative models, favouring a deeper comprehension and interpretation of all the building aspects. Its open structure allows future research to customize, scale and adapt the knowledge base different typologies of artefacts and heritage activities

    A multi-INT semantic reasoning framework for intelligence analysis support

    Get PDF
    Lockheed Martin Corp. has funded research to generate a framework and methodology for developing semantic reasoning applications to support the discipline oflntelligence Analysis. This chapter outlines that framework, discusses how it may be used to advance the information sharing and integrated analytic needs of the Intelligence Community, and suggests a system I software architecture for such applications

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201
    corecore