43,932 research outputs found

    Semantic Frame Identification with Distributed Word Representations

    Get PDF
    Abstract We present a novel technique for semantic frame identification using distributed representations of predicates and their syntactic context; this technique leverages automatic syntactic parses and a generic set of word embeddings. Given labeled data annotated with frame-semantic parses, we learn a model that projects the set of word representations for the syntactic context around a predicate to a low dimensional representation. The latter is used for semantic frame identification; with a standard argument identification method inspired by prior work, we achieve state-ofthe-art results on FrameNet-style framesemantic analysis. Additionally, we report strong results on PropBank-style semantic role labeling in comparison to prior work

    What does semantic tiling of the cortex tell us about semantics?

    Get PDF
    Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the cortex. Although this impressive research establishes distributed cortical areas active during the conceptual processing that underlies semantics, it tells us little about the nature of this processing. While mapping concepts between Marr's computational and implementation levels to support neural encoding and decoding, this approach ignores Marr's algorithmic level, central for understanding the mechanisms that implement cognition, in general, and conceptual processing, in particular. Following decades of research in cognitive science and neuroscience, what do we know so far about the representation and processing mechanisms that implement conceptual abilities? Most basically, much is known about the mechanisms associated with: (1) features and frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based inference, (4) concept composition, and (5) conceptual flexibility. Rather than explaining these fundamental representation and processing mechanisms, semantic tiles simply provide a trace of their activity over a relatively short time period within a specific learning context. Establishing the mechanisms that implement conceptual processing in the brain will require more than mapping it to cortical (and sub-cortical) activity, with process models from cognitive science likely to play central roles in specifying the intervening mechanisms. More generally, neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that contribute essential explanations to how the brain works, going beyond simply establishing the brain areas that respond to various task conditions
    • …
    corecore