2,872 research outputs found

    If physics is an information science, what is an observer?

    Full text link
    Interpretations of quantum theory have traditionally assumed a "Galilean" observer, a bare "point of view" implemented physically by a quantum system. This paper investigates the consequences of replacing such an informationally-impoverished observer with an observer that satisfies the requirements of classical automata theory, i.e. an observer that encodes sufficient prior information to identify the system being observed and recognize its acceptable states. It shows that with reasonable assumptions about the physical dynamics of information channels, the observations recorded by such an observer will display the typical characteristics predicted by quantum theory, without requiring any specific assumptions about the observer's physical implementation.Comment: 30 pages, comments welcome; v2 significant revisions - results unchange

    Logic of Non-Monotonic Interactive Proofs (Formal Theory of Temporary Knowledge Transfer)

    Full text link
    We propose a monotonic logic of internalised non-monotonic or instant interactive proofs (LiiP) and reconstruct an existing monotonic logic of internalised monotonic or persistent interactive proofs (LiP) as a minimal conservative extension of LiiP. Instant interactive proofs effect a fragile epistemic impact in their intended communities of peer reviewers that consists in the impermanent induction of the knowledge of their proof goal by means of the knowledge of the proof with the interpreting reviewer: If my peer reviewer knew my proof then she would at least then (in that instant) know that its proof goal is true. Their impact is fragile and their induction of knowledge impermanent in the sense of being the case possibly only at the instant of learning the proof. This accounts for the important possibility of internalising proofs of statements whose truth value can vary, which, as opposed to invariant statements, cannot have persistent proofs. So instant interactive proofs effect a temporary transfer of certain propositional knowledge (knowable ephemeral facts) via the transmission of certain individual knowledge (knowable non-monotonic proofs) in distributed systems of multiple interacting agents.Comment: continuation of arXiv:1201.3667 ; published extended abstract: DOI:10.1007/978-3-642-36039-8_16 ; related to arXiv:1208.591

    Stone-Type Dualities for Separation Logics

    Get PDF
    Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because -- in addition to elegant abstraction -- they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality for the structures that interpret bunched logics, starting with the weakest systems, recovering the familiar BI and Boolean BI (BBI), and extending to both classical and intuitionistic Separation Logic. We demonstrate the uniformity and modularity of this analysis by additionally capturing the bunched logics obtained by extending BI and BBI with modalities and multiplicative connectives corresponding to disjunction, negation and falsum. This includes the logic of separating modalities (LSM), De Morgan BI (DMBI), Classical BI (CBI), and the sub-classical family of logics extending Bi-intuitionistic (B)BI (Bi(B)BI). We additionally obtain as corollaries soundness and completeness theorems for the specific Kripke-style models of these logics as presented in the literature: for DMBI, the sub-classical logics extending BiBI and a new bunched logic, Concurrent Kleene BI (connecting our work to Concurrent Separation Logic), this is the first time soundness and completeness theorems have been proved. We thus obtain a comprehensive semantic account of the multiplicative variants of all standard propositional connectives in the bunched logic setting. This approach synthesises a variety of techniques from modal, substructural and categorical logic and contextualizes the "resource semantics" interpretation underpinning Separation Logic amongst them

    Rewriting Logic Semantics of a Plan Execution Language

    Get PDF
    The Plan Execution Interchange Language (PLEXIL) is a synchronous language developed by NASA to support autonomous spacecraft operations. In this paper, we propose a rewriting logic semantics of PLEXIL in Maude, a high-performance logical engine. The rewriting logic semantics is by itself a formal interpreter of the language and can be used as a semantic benchmark for the implementation of PLEXIL executives. The implementation in Maude has the additional benefit of making available to PLEXIL designers and developers all the formal analysis and verification tools provided by Maude. The formalization of the PLEXIL semantics in rewriting logic poses an interesting challenge due to the synchronous nature of the language and the prioritized rules defining its semantics. To overcome this difficulty, we propose a general procedure for simulating synchronous set relations in rewriting logic that is sound and, for deterministic relations, complete. We also report on two issues at the design level of the original PLEXIL semantics that were identified with the help of the executable specification in Maude

    Linear superposition as a core theorem of quantum empiricism

    Get PDF
    Clarifying the nature of the quantum state Ψ|\Psi\rangle is at the root of the problems with insight into (counterintuitive) quantum postulates. We provide a direct-and math-axiom free-empirical derivation of this object as an element of a vector space. Establishing the linearity of this structure-quantum superposition-is based on a set-theoretic creation of ensemble formations and invokes the following three principia: (I)(\textsf{I}) quantum statics, (II)(\textsf{II}) doctrine of a number in the physical theory, and (III)(\textsf{III}) mathematization of matching the two observations with each other; quantum invariance. All of the constructs rest upon a formalization of the minimal experimental entity: observed micro-event, detector click. This is sufficient for producing the C\mathbb C-numbers, axioms of linear vector space (superposition principle), statistical mixtures of states, eigenstates and their spectra, and non-commutativity of observables. No use is required of the concept of time. As a result, the foundations of theory are liberated to a significant extent from the issues associated with physical interpretations, philosophical exegeses, and mathematical reconstruction of the entire quantum edifice.Comment: No figures. 64 pages; 68 pages(+4), overall substantial improvements; 70 pages(+2), further improvement

    Maude: specification and programming in rewriting logic

    Get PDF
    Maude is a high-level language and a high-performance system supporting executable specification and declarative programming in rewriting logic. Since rewriting logic contains equational logic, Maude also supports equational specification and programming in its sublanguage of functional modules and theories. The underlying equational logic chosen for Maude is membership equational logic, that has sorts, subsorts, operator overloading, and partiality definable by membership and equality conditions. Rewriting logic is reflective, in the sense of being able to express its own metalevel at the object level. Reflection is systematically exploited in Maude endowing the language with powerful metaprogramming capabilities, including both user-definable module operations and declarative strategies to guide the deduction process. This paper explains and illustrates with examples the main concepts of Maude's language design, including its underlying logic, functional, system and object-oriented modules, as well as parameterized modules, theories, and views. We also explain how Maude supports reflection, metaprogramming and internal strategies. The paper outlines the principles underlying the Maude system implementation, including its semicompilation techniques. We conclude with some remarks about applications, work on a formal environment for Maude, and a mobile language extension of Maude

    Two Algebraic Process Semantics for Contextual Nets

    No full text
    We show that the so-called 'Petri nets are monoids' approach initiated by Meseguer and Montanari can be extended from ordinary place/transition Petri nets to contextual nets by considering suitable non-free monoids of places. The algebraic characterizations of net concurrent computations we provide cover both the collective and the individual token philosophy, uniformly along the two interpretations, and coincide with the classical proposals for place/transition Petri nets in the absence of read-arcs
    corecore