36 research outputs found

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    MENTORING DEEP LEARNING MODELS FOR MASS SCREENING WITH LIMITED DATA

    Get PDF
    Deep Learning (DL) has an extensively rich state-of-the-art literature in medical imaging analysis. However, it requires large amount of data to begin training. This limits its usage in tackling future epidemics, as one might need to wait for months and even years to collect fully annotated data, raising a fundamental question: is it possible to deploy AI-driven tool earlier in epidemics to mass screen the infected cases? For such a context, human/Expert in the loop Machine Learning (ML), or Active Learning (AL), becomes imperative enabling machines to commence learning from the first day with minimum available labeled dataset. In an unsupervised learning, we develop pretrained DL models that autonomously refine themselves through iterative learning, with human experts intervening only when the model misclassifies and for a limited amount of data. We introduce a new terminology for this process, calling it mentoring. We validated this concept in the context of Covid-19 in three distinct datasets: Chest X-rays, Computed Tomography (CT) scans, and cough sounds, each consisting of 1364, 4714, and 10,000 images, respectively. The framework classifies the deep features of the data into two clusters (0/1: Covid-19/non-Covid-19). Our main goal is to strongly emphasize the potential use of AL in predicting diseases during future epidemics. With this framework, we achieved the AUC scores of 0.76, 0.99, and 0.94 on cough sound, Chest X-rays, and CT scans dataset using only 40%, 33%, and 30% of the annotated dataset, respectively. For reproducibility, the link of implementation is provided: https://github.com/2ailab/Active-Learning

    A Learning Health System for Radiation Oncology

    Get PDF
    The proposed research aims to address the challenges faced by clinical data science researchers in radiation oncology accessing, integrating, and analyzing heterogeneous data from various sources. The research presents a scalable intelligent infrastructure, called the Health Information Gateway and Exchange (HINGE), which captures and structures data from multiple sources into a knowledge base with semantically interlinked entities. This infrastructure enables researchers to mine novel associations and gather relevant knowledge for personalized clinical outcomes. The dissertation discusses the design framework and implementation of HINGE, which abstracts structured data from treatment planning systems, treatment management systems, and electronic health records. It utilizes disease-specific smart templates for capturing clinical information in a discrete manner. HINGE performs data extraction, aggregation, and quality and outcome assessment functions automatically, connecting seamlessly with local IT/medical infrastructure. Furthermore, the research presents a knowledge graph-based approach to map radiotherapy data to an ontology-based data repository using FAIR (Findable, Accessible, Interoperable, Reusable) concepts. This approach ensures that the data is easily discoverable and accessible for clinical decision support systems. The dissertation explores the ETL (Extract, Transform, Load) process, data model frameworks, ontologies, and provides a real-world clinical use case for this data mapping. To improve the efficiency of retrieving information from large clinical datasets, a search engine based on ontology-based keyword searching and synonym-based term matching tool was developed. The hierarchical nature of ontologies is leveraged to retrieve patient records based on parent and children classes. Additionally, patient similarity analysis is conducted using vector embedding models (Word2Vec, Doc2Vec, GloVe, and FastText) to identify similar patients based on text corpus creation methods. Results from the analysis using these models are presented. The implementation of a learning health system for predicting radiation pneumonitis following stereotactic body radiotherapy is also discussed. 3D convolutional neural networks (CNNs) are utilized with radiographic and dosimetric datasets to predict the likelihood of radiation pneumonitis. DenseNet-121 and ResNet-50 models are employed for this study, along with integrated gradient techniques to identify salient regions within the input 3D image dataset. The predictive performance of the 3D CNN models is evaluated based on clinical outcomes. Overall, the proposed Learning Health System provides a comprehensive solution for capturing, integrating, and analyzing heterogeneous data in a knowledge base. It offers researchers the ability to extract valuable insights and associations from diverse sources, ultimately leading to improved clinical outcomes. This work can serve as a model for implementing LHS in other medical specialties, advancing personalized and data-driven medicine

    Principles and Applications of Data Science

    Get PDF
    Data science is an emerging multidisciplinary field which lies at the intersection of computer science, statistics, and mathematics, with different applications and related to data mining, deep learning, and big data. This Special Issue on “Principles and Applications of Data Science” focuses on the latest developments in the theories, techniques, and applications of data science. The topics include data cleansing, data mining, machine learning, deep learning, and the applications of medical and healthcare, as well as social media

    Preface

    Get PDF
    corecore