557 research outputs found

    Value-driven partner search for <i>Energy from Waste</i> projects

    Get PDF
    Energy from Waste (EfW) projects require complex value chains to operate effectively. To identify business partners, plant operators need to network with organisations whose strategic objectives are aligned with their own. Supplier organisations need to work out where they fit in the value chain. Our aim is to support people in identifying potential business partners, based on their organisation’s interpretation of value. Value for an organisation should reflect its strategy and may be interpreted using key priorities and KPIs (key performance indicators). KPIs may comprise any or all of knowledge, operational, economic, social and convenience indicators. This paper presents an ontology for modelling and prioritising connections within the business environment, and in the process provides means for defining value and mapping these to corresponding KPIs. The ontology is used to guide the design of a visual representation of the environment to aid partner search

    UK biofuel policy: envisaging sustainable biofuels, shaping institutions and futures

    Get PDF
    Technoscientific innovation has played a central role in UK biofuel policy. When the government was proposing mandatory targets in 2007–08, public controversy over ‘unsustainable biofuels’ was channelled into prospects for future biofuels to avoid environmental harm and land-use conflicts. This vision serves as an imaginary—a feasible, desirable future. Societal benefits have been envisaged according to specific models of economic competitiveness, valuable knowledge, and environmental sustainability together comprising a prevalent imaginary of future ‘sustainable biofuels’. This has informed institutional change along two lines. First, targets are envisaged as a temporary transition until future ‘advanced biofuels’ make liquid fuel more sustainable. Second, UK research institutes realign their priorities towards seeking investment from foreign counterparts and global energy companies, in the name of making UK science and industry more competitive. Together these measures have been justified as necessary for a transition to advanced biofuels which would better contribute to a low-carbon economy. Although this imaginary may eventually be transformed into reality, initially realised has been institutional change that reinforces infrastructural dependence on liquid fuel for the internal combustion engine. As an imaginary, then, ‘sustainable biofuels’ can help explain how a policy agenda promotes one future, while marginalising alternatives

    Land system science and sustainable development of the earth system: A global land project perspective

    Get PDF
    Land systems are the result of human interactions with the natural environment. Understanding the drivers, state, trends and impacts of different land systems on social and natural processes helps to reveal how changes in the land system affect the functioning of the socio-ecological system as a whole and the tradeoff these changes may represent. The Global Land Project has led advances by synthesizing land systems research across different scales and providing concepts to further understand the feedbacks between social-and environmental systems, between urban and rural environments and between distant world regions. Land system science has moved from a focus on observation of change and understanding the drivers of these changes to a focus on using this understanding to design sustainable transformations through stakeholder engagement and through the concept of land governance. As land use can be seen as the largest geo-engineering project in which mankind has engaged, land system science can act as a platform for integration of insights from different disciplines and for translation of knowledge into action

    Semantic Array Programming for Environmental Modelling: Application of the Mastrave Library

    Get PDF
    Environmental datasets grow in size and specialization while models designed for local scale are often unsuitable at regional/continental scale. At regional scale, data are usually available as georeferenced collections of spatially distributed despite semantically atomic information. Complex data intrinsically impose modellers to manipulate nontrivial information structures. For example, multi-dimensional arrays of time series may be composed by slices of raster spatial matrices for each time step, whilst heterogeneous collections of uneven arrays are common when dealing with data analogous to precipitation events, and these structures may ask for integration at several spatial scales, projections and temporal extents. Interestingly, it might be far more difficult to practically implement such a complexity rather than conceptually describe it: a subset of modelling generalizations may deal more with abstraction rather than with the explosion of lines of code. Many environmental modelling algorithms are composed by chains of data-transformations or trees of domain specific sub-algorithms. Concisely expressing them without the need for paying attention on the enormous set of spatio-temporal details, is a highly recommendable practice in both mathematical formulation and implementation. The use of semantic array programming paradigm is here exemplified as a powerful conceptual and practical (with the free software library Mastrave) tool for easing scalability and semantic integration in environmental modelling. Array programming, AP, is widely used for its computational effectiveness but often underexploited in reducing the gap between mathematical notation and algorithm implementations, i.e. by promoting arrays (vectors, matrices, tensors) as atomic quantities with extremely compact manipulating operators. Coherent array-based mathematical description of models can simplify complex algorithm prototyping while moving mathematical reasoning directly into the source code – because of its substantial size reduction – where the mathematical description is actually expressed in a completely formalized and reproducible way. The proposed paradigm suggests to complement the characteristic AP weak typing with semantics, both by composing generalized modular sub-models and via array oriented – thus concise – constraints. The Mastrave library use is exemplified with a regional scale benchmark application to local-average invariant (LAI) downscaling of climate raster data. Unnecessary errors frequently introduced by non-LAI upsampling are shown to be easily detected and removed when the scientific modelling practice is terse enough to let mathematical reasoning and model coding merge together.JRC.H.3-Forest Resources and Climat

    Renewables 2005: Global Status Report

    Get PDF
    The Global Status Report provides an assessment of several renewables technologies -- small hydro, modern biomass, wind, solar, geothermal, and biofuels -- that are now competing with conventional fuels in four distinct markets: power generation, hot water and space heating, transportation fuels, and rural (off-grid) energy supplies. The report finds that government support for renewable energy is growing rapidly. At least 48 countries now have some type of renewable energy promotion policy, including 14 developing countries. Most targets are for shares of electricity production, typically 5-30 percent, by the 2010-2012 timeframe. Mandates for blending biofuels into vehicle fuels have been enacted in at least 20 states and provinces worldwide as well as in three key countries -- Brazil, China and India. Government leadership provides the key to market success, according to the report. The market leaders in renewable energy in 2004 were Brazil in biofuels, China in solar hot water, Germany in solar electricity, and Spain in wind power. The Global Status Report fills a gap in the international energy reporting arena, which has tended to neglect the emerging renewable energy technologies. Regular updates will be produced in the future. The report was produced and published by the Worldwatch Institute and released today at the Beijing International Renewable Energy Conference 2005, sponsored by the Government of China. This Conference brings together government and private leaders from around the world, providing a forum for international leadership on renewable energy and connects the wide variety of stakeholders that came together at the International Conference for Renewable Energies in Bonn, Germany, in 2004. The creation of REN21 was sponsored by the German Federal Ministry for Economic Cooperation and Development and the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. Formally established in Copenhagen in June 2005, REN21 is now supported by a steering committee of 11 governments, 5 intergovernmental organizations, 5 non-governmental organizations, and several regional, local, and private organizations

    Supply chain integration in the UK bioenergy industry

    Get PDF
    This study is an investigation on supply chain integration in bioenergy. It takes a different approach from many contemporary studies found in the literature because most research in bioenergy treats technological performance, characteristics of feedstock, impact on energy consumption in relation to the carbon footprint as distinct and separate entities. None of these examples consider bioenergy from supply chain integration and thus, a business performance perspective. The study proposes that bioenergy is defined from the biomass-to-bioenergy, which is from the point of origin to the point of conversion, and that it is a developing industry. It was found that stakeholders play a prominent role throughout the various phases from planning approval to project implementation and are also involved during operational phases of a bioenergy business. In the study this is referred to as stakeholder integration. During handover phases process integration dominates operational activities within the bioenergy firm. By dividing characteristics in a bioenergy business as stakeholder and process integration it is possible to identify constructs that are applicable to bioenergy. These were investigated through secondary research as well as primary research approaches. Inherent within the configuration of bioenergy supply chains are issues and challenges that were different from established energy systems and factors peculiar to conventional supply chain approaches. The research finds bioenergy supply chains tend to be horizontally integrated from B2C, and as yet lack vertical integration, B2B found in mature supply chains. Contributions resulting from this factor, coupled with the research approaches, particularly by using qualitative methods extended knowledge and practice in operations management research as well identifying best practice in a novel and emergent industry

    Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment

    Get PDF
    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States for bioenergy production. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform the sustainable agricultural residue removal assessment. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10–100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time. This biomass resource has the potential for producing over 68 billion liters of cellulosic biofuels
    • …
    corecore