7,593 research outputs found

    Measuring concept similarities in multimedia ontologies: analysis and evaluations

    Get PDF
    The recent development of large-scale multimedia concept ontologies has provided a new momentum for research in the semantic analysis of multimedia repositories. Different methods for generic concept detection have been extensively studied, but the question of how to exploit the structure of a multimedia ontology and existing inter-concept relations has not received similar attention. In this paper, we present a clustering-based method for modeling semantic concepts on low-level feature spaces and study the evaluation of the quality of such models with entropy-based methods. We cover a variety of methods for assessing the similarity of different concepts in a multimedia ontology. We study three ontologies and apply the proposed techniques in experiments involving the visual and semantic similarities, manual annotation of video, and concept detection. The results show that modeling inter-concept relations can provide a promising resource for many different application areas in semantic multimedia processing

    An empirical study of inter-concept similarities in multimedia ontologies

    Get PDF
    Generic concept detection has been a widely studied topic in recent research on multimedia analysis and retrieval, but the issue of how to exploit the structure of a multimedia ontology as well as different inter-concept relations, has not received similar attention. In this paper, we present results from our empirical analysis of different types of similarity among semantic concepts in two multimedia ontologies, LSCOM-Lite and CDVP-206. The results show promise that the proposed methods may be helpful in providing insight into the existing inter-concept relations within an ontology and selecting the most facilitating set of concepts and hierarchical relations. Such an analysis as this can be utilized in various tasks such as building more reliable concept detectors and designing large-scale ontologies

    Using association rule mining to enrich semantic concepts for video retrieval

    Get PDF
    In order to achieve true content-based information retrieval on video we should analyse and index video with high-level semantic concepts in addition to using user-generated tags and structured metadata like title, date, etc. However the range of such high-level semantic concepts, detected either manually or automatically, usually limited compared to the richness of information content in video and the potential vocabulary of available concepts for indexing. Even though there is work to improve the performance of individual concept classifiers, we should strive to make the best use of whatever partial sets of semantic concept occurrences are available to us. We describe in this paper our method for using association rule mining to automatically enrich the representation of video content through a set of semantic concepts based on concept co-occurrence patterns. We describe our experiments on the TRECVid 2005 video corpus annotated with the 449 concepts of the LSCOM ontology. The evaluation of our results shows the usefulness of our approach

    Semantic Retrieval and Automatic Annotation: Linear Transformations, Correlation and Semantic Spaces

    No full text
    This paper proposes a new technique for auto-annotation and semantic retrieval based upon the idea of linearly mapping an image feature space to a keyword space. The new technique is compared to several related techniques, and a number of salient points about each of the techniques are discussed and contrasted. The paper also discusses how these techniques might actually scale to a real-world retrieval problem, and demonstrates this though a case study of a semantic retrieval technique being used on a real-world data-set (with a mix of annotated and unannotated images) from a picture library

    Socializing the Semantic Gap: A Comparative Survey on Image Tag Assignment, Refinement and Retrieval

    Get PDF
    Where previous reviews on content-based image retrieval emphasize on what can be seen in an image to bridge the semantic gap, this survey considers what people tag about an image. A comprehensive treatise of three closely linked problems, i.e., image tag assignment, refinement, and tag-based image retrieval is presented. While existing works vary in terms of their targeted tasks and methodology, they rely on the key functionality of tag relevance, i.e. estimating the relevance of a specific tag with respect to the visual content of a given image and its social context. By analyzing what information a specific method exploits to construct its tag relevance function and how such information is exploited, this paper introduces a taxonomy to structure the growing literature, understand the ingredients of the main works, clarify their connections and difference, and recognize their merits and limitations. For a head-to-head comparison between the state-of-the-art, a new experimental protocol is presented, with training sets containing 10k, 100k and 1m images and an evaluation on three test sets, contributed by various research groups. Eleven representative works are implemented and evaluated. Putting all this together, the survey aims to provide an overview of the past and foster progress for the near future.Comment: to appear in ACM Computing Survey

    Optical tomography: Image improvement using mixed projection of parallel and fan beam modes

    Get PDF
    Mixed parallel and fan beam projection is a technique used to increase the quality images. This research focuses on enhancing the image quality in optical tomography. Image quality can be defined by measuring the Peak Signal to Noise Ratio (PSNR) and Normalized Mean Square Error (NMSE) parameters. The findings of this research prove that by combining parallel and fan beam projection, the image quality can be increased by more than 10%in terms of its PSNR value and more than 100% in terms of its NMSE value compared to a single parallel beam
    corecore