4,155 research outputs found

    Self-Taught Hashing for Fast Similarity Search

    Full text link
    The ability of fast similarity search at large scale is of great importance to many Information Retrieval (IR) applications. A promising way to accelerate similarity search is semantic hashing which designs compact binary codes for a large number of documents so that semantically similar documents are mapped to similar codes (within a short Hamming distance). Although some recently proposed techniques are able to generate high-quality codes for documents known in advance, obtaining the codes for previously unseen documents remains to be a very challenging problem. In this paper, we emphasise this issue and propose a novel Self-Taught Hashing (STH) approach to semantic hashing: we first find the optimal ll-bit binary codes for all documents in the given corpus via unsupervised learning, and then train ll classifiers via supervised learning to predict the ll-bit code for any query document unseen before. Our experiments on three real-world text datasets show that the proposed approach using binarised Laplacian Eigenmap (LapEig) and linear Support Vector Machine (SVM) outperforms state-of-the-art techniques significantly

    SHOE: Supervised Hashing with Output Embeddings

    Full text link
    We present a supervised binary encoding scheme for image retrieval that learns projections by taking into account similarity between classes obtained from output embeddings. Our motivation is that binary hash codes learned in this way improve both the visual quality of retrieval results and existing supervised hashing schemes. We employ a sequential greedy optimization that learns relationship aware projections by minimizing the difference between inner products of binary codes and output embedding vectors. We develop a joint optimization framework to learn projections which improve the accuracy of supervised hashing over the current state of the art with respect to standard and sibling evaluation metrics. We further boost performance by applying the supervised dimensionality reduction technique on kernelized input CNN features. Experiments are performed on three datasets: CUB-2011, SUN-Attribute and ImageNet ILSVRC 2010. As a by-product of our method, we show that using a simple k-nn pooling classifier with our discriminative codes improves over the complex classification models on fine grained datasets like CUB and offer an impressive compression ratio of 1024 on CNN features

    Machine Learning Techniques and Applications For Ground-based Image Analysis

    Full text link
    Ground-based whole sky cameras have opened up new opportunities for monitoring the earth's atmosphere. These cameras are an important complement to satellite images by providing geoscientists with cheaper, faster, and more localized data. The images captured by whole sky imagers can have high spatial and temporal resolution, which is an important pre-requisite for applications such as solar energy modeling, cloud attenuation analysis, local weather prediction, etc. Extracting valuable information from the huge amount of image data by detecting and analyzing the various entities in these images is challenging. However, powerful machine learning techniques have become available to aid with the image analysis. This article provides a detailed walk-through of recent developments in these techniques and their applications in ground-based imaging. We aim to bridge the gap between computer vision and remote sensing with the help of illustrative examples. We demonstrate the advantages of using machine learning techniques in ground-based image analysis via three primary applications -- segmentation, classification, and denoising

    Scalable Similarity Learning using Large Margin Neighborhood Embedding

    Full text link
    Classifying large-scale image data into object categories is an important problem that has received increasing research attention. Given the huge amount of data, non-parametric approaches such as nearest neighbor classifiers have shown promising results, especially when they are underpinned by a learned distance or similarity measurement. Although metric learning has been well studied in the past decades, most existing algorithms are impractical to handle large-scale data sets. In this paper, we present an image similarity learning method that can scale well in both the number of images and the dimensionality of image descriptors. To this end, similarity comparison is restricted to each sample's local neighbors and a discriminative similarity measure is induced from large margin neighborhood embedding. We also exploit the ensemble of projections so that high-dimensional features can be processed in a set of lower-dimensional subspaces in parallel without much performance compromise. The similarity function is learned online using a stochastic gradient descent algorithm in which the triplet sampling strategy is customized for quick convergence of classification performance. The effectiveness of our proposed model is validated on several data sets with scales varying from tens of thousands to one million images. Recognition accuracies competitive with the state-of-the-art performance are achieved with much higher efficiency and scalability

    Supervised mid-level features for word image representation

    Full text link
    This paper addresses the problem of learning word image representations: given the cropped image of a word, we are interested in finding a descriptive, robust, and compact fixed-length representation. Machine learning techniques can then be supplied with these representations to produce models useful for word retrieval or recognition tasks. Although many works have focused on the machine learning aspect once a global representation has been produced, little work has been devoted to the construction of those base image representations: most works use standard coding and aggregation techniques directly on top of standard computer vision features such as SIFT or HOG. We propose to learn local mid-level features suitable for building word image representations. These features are learnt by leveraging character bounding box annotations on a small set of training images. However, contrary to other approaches that use character bounding box information, our approach does not rely on detecting the individual characters explicitly at testing time. Our local mid-level features can then be aggregated to produce a global word image signature. When pairing these features with the recent word attributes framework of Almaz\'an et al., we obtain results comparable with or better than the state-of-the-art on matching and recognition tasks using global descriptors of only 96 dimensions

    A Comprehensive Survey on Cross-modal Retrieval

    Full text link
    In recent years, cross-modal retrieval has drawn much attention due to the rapid growth of multimodal data. It takes one type of data as the query to retrieve relevant data of another type. For example, a user can use a text to retrieve relevant pictures or videos. Since the query and its retrieved results can be of different modalities, how to measure the content similarity between different modalities of data remains a challenge. Various methods have been proposed to deal with such a problem. In this paper, we first review a number of representative methods for cross-modal retrieval and classify them into two main groups: 1) real-valued representation learning, and 2) binary representation learning. Real-valued representation learning methods aim to learn real-valued common representations for different modalities of data. To speed up the cross-modal retrieval, a number of binary representation learning methods are proposed to map different modalities of data into a common Hamming space. Then, we introduce several multimodal datasets in the community, and show the experimental results on two commonly used multimodal datasets. The comparison reveals the characteristic of different kinds of cross-modal retrieval methods, which is expected to benefit both practical applications and future research. Finally, we discuss open problems and future research directions.Comment: 20 pages, 11 figures, 9 table

    Machine listening intelligence

    Full text link
    This manifesto paper will introduce machine listening intelligence, an integrated research framework for acoustic and musical signals modelling, based on signal processing, deep learning and computational musicology.Comment: Proceedings of the First International Conference on Deep Learning and Music, Anchorage, US, May, 2017 (arXiv:1706.08675v1 [cs.NE]

    Towards Learning a Universal Non-Semantic Representation of Speech

    Full text link
    The ultimate goal of transfer learning is to reduce labeled data requirements by exploiting a pre-existing embedding model trained for different datasets or tasks. The visual and language communities have established benchmarks to compare embeddings, but the speech community has yet to do so. This paper proposes a benchmark for comparing speech representations on non-semantic tasks, and proposes a representation based on an unsupervised triplet-loss objective. The proposed representation outperforms other representations on the benchmark, and even exceeds state-of-the-art performance on a number of transfer learning tasks. The embedding is trained on a publicly available dataset, and it is tested on a variety of low-resource downstream tasks, including personalization tasks and medical domain. The benchmark, models, and evaluation code are publicly released

    Unsupervised Learning on Neural Network Outputs: with Application in Zero-shot Learning

    Full text link
    The outputs of a trained neural network contain much richer information than just an one-hot classifier. For example, a neural network might give an image of a dog the probability of one in a million of being a cat but it is still much larger than the probability of being a car. To reveal the hidden structure in them, we apply two unsupervised learning algorithms, PCA and ICA, to the outputs of a deep Convolutional Neural Network trained on the ImageNet of 1000 classes. The PCA/ICA embedding of the object classes reveals their visual similarity and the PCA/ICA components can be interpreted as common visual features shared by similar object classes. For an application, we proposed a new zero-shot learning method, in which the visual features learned by PCA/ICA are employed. Our zero-shot learning method achieves the state-of-the-art results on the ImageNet of over 20000 classes

    COBRA: Contrastive Bi-Modal Representation Algorithm

    Full text link
    There are a wide range of applications that involve multi-modal data, such as cross-modal retrieval, visual question-answering, and image captioning. Such applications are primarily dependent on aligned distributions of the different constituent modalities. Existing approaches generate latent embeddings for each modality in a joint fashion by representing them in a common manifold. However these joint embedding spaces fail to sufficiently reduce the modality gap, which affects the performance in downstream tasks. We hypothesize that these embeddings retain the intra-class relationships but are unable to preserve the inter-class dynamics. In this paper, we present a novel framework COBRA that aims to train two modalities (image and text) in a joint fashion inspired by the Contrastive Predictive Coding (CPC) and Noise Contrastive Estimation (NCE) paradigms which preserve both inter and intra-class relationships. We empirically show that this framework reduces the modality gap significantly and generates a robust and task agnostic joint-embedding space. We outperform existing work on four diverse downstream tasks spanning across seven benchmark cross-modal datasets.Comment: 13 Pages, 6 Figures and 10 Table
    • …
    corecore