897 research outputs found

    The Hidden Web, XML and Semantic Web: A Scientific Data Management Perspective

    Get PDF
    The World Wide Web no longer consists just of HTML pages. Our work sheds light on a number of trends on the Internet that go beyond simple Web pages. The hidden Web provides a wealth of data in semi-structured form, accessible through Web forms and Web services. These services, as well as numerous other applications on the Web, commonly use XML, the eXtensible Markup Language. XML has become the lingua franca of the Internet that allows customized markups to be defined for specific domains. On top of XML, the Semantic Web grows as a common structured data source. In this work, we first explain each of these developments in detail. Using real-world examples from scientific domains of great interest today, we then demonstrate how these new developments can assist the managing, harvesting, and organization of data on the Web. On the way, we also illustrate the current research avenues in these domains. We believe that this effort would help bridge multiple database tracks, thereby attracting researchers with a view to extend database technology.Comment: EDBT - Tutorial (2011

    Unsupervised Terminological Ontology Learning based on Hierarchical Topic Modeling

    Full text link
    In this paper, we present hierarchical relationbased latent Dirichlet allocation (hrLDA), a data-driven hierarchical topic model for extracting terminological ontologies from a large number of heterogeneous documents. In contrast to traditional topic models, hrLDA relies on noun phrases instead of unigrams, considers syntax and document structures, and enriches topic hierarchies with topic relations. Through a series of experiments, we demonstrate the superiority of hrLDA over existing topic models, especially for building hierarchies. Furthermore, we illustrate the robustness of hrLDA in the settings of noisy data sets, which are likely to occur in many practical scenarios. Our ontology evaluation results show that ontologies extracted from hrLDA are very competitive with the ontologies created by domain experts

    Living Knowledge

    Get PDF
    Diversity, especially manifested in language and knowledge, is a function of local goals, needs, competences, beliefs, culture, opinions and personal experience. The Living Knowledge project considers diversity as an asset rather than a problem. With the project, foundational ideas emerged from the synergic contribution of different disciplines, methodologies (with which many partners were previously unfamiliar) and technologies flowed in concrete diversity-aware applications such as the Future Predictor and the Media Content Analyser providing users with better structured information while coping with Web scale complexities. The key notions of diversity, fact, opinion and bias have been defined in relation to three methodologies: Media Content Analysis (MCA) which operates from a social sciences perspective; Multimodal Genre Analysis (MGA) which operates from a semiotic perspective and Facet Analysis (FA) which operates from a knowledge representation and organization perspective. A conceptual architecture that pulls all of them together has become the core of the tools for automatic extraction and the way they interact. In particular, the conceptual architecture has been implemented with the Media Content Analyser application. The scientific and technological results obtained are described in the following

    Exploiting extensible background knowledge for clustering-based automatic keyphrase extraction

    Get PDF
    Keyphrases are single- or multi-word phrases that are used to describe the essential content of a document. Utilizing an external knowledge source such as WordNet is often used in keyphrase extraction methods to obtain relation information about terms and thus improves the result, but the drawback is that a sole knowledge source is often limited. This problem is identified as the coverage limitation problem. In this paper, we introduce SemCluster, a clustering-based unsupervised keyphrase extraction method that addresses the coverage limitation problem by using an extensible approach that integrates an internal ontology (i.e., WordNet) with other knowledge sources to gain a wider background knowledge. SemCluster is evaluated against three unsupervised methods, TextRank, ExpandRank, and KeyCluster, and under the F1-measure metric. The evaluation results demonstrate that SemCluster has better accuracy and computational efficiency and is more robust when dealing with documents from different domains

    Forecasting the Spreading of Technologies in Research Communities

    Get PDF
    Technologies such as algorithms, applications and formats are an important part of the knowledge produced and reused in the research process. Typically, a technology is expected to originate in the context of a research area and then spread and contribute to several other fields. For example, Semantic Web technologies have been successfully adopted by a variety of fields, e.g., Information Retrieval, Human Computer Interaction, Biology, and many others. Unfortunately, the spreading of technologies across research areas may be a slow and inefficient process, since it is easy for researchers to be unaware of potentially relevant solutions produced by other research communities. In this paper, we hypothesise that it is possible to learn typical technology propagation patterns from historical data and to exploit this knowledge i) to anticipate where a technology may be adopted next and ii) to alert relevant stakeholders about emerging and relevant technologies in other fields. To do so, we propose the Technology-Topic Framework, a novel approach which uses a semantically enhanced technology-topic model to forecast the propagation of technologies to research areas. A formal evaluation of the approach on a set of technologies in the Semantic Web and Artificial Intelligence areas has produced excellent results, confirming the validity of our solution

    An Incremental Learning Method to Support the Annotation of Workflows with Data-to-Data Relations

    Get PDF
    Workflow formalisations are often focused on the representation of a process with the primary objective to support execution. However, there are scenarios where what needs to be represented is the effect of the process on the data artefacts involved, for example when reasoning over the corresponding data policies. This can be achieved by annotating the workflow with the semantic relations that occur between these data artefacts. However, manually producing such annotations is difficult and time consuming. In this paper we introduce a method based on recommendations to support users in this task. Our approach is centred on an incremental rule association mining technique that allows to compensate the cold start problem due to the lack of a training set of annotated workflows. We discuss the implementation of a tool relying on this approach and how its application on an existing repository of workflows effectively enable the generation of such annotations

    First Women, Second Sex: Gender Bias in Wikipedia

    Full text link
    Contributing to history has never been as easy as it is today. Anyone with access to the Web is able to play a part on Wikipedia, an open and free encyclopedia. Wikipedia, available in many languages, is one of the most visited websites in the world and arguably one of the primary sources of knowledge on the Web. However, not everyone is contributing to Wikipedia from a diversity point of view; several groups are severely underrepresented. One of those groups is women, who make up approximately 16% of the current contributor community, meaning that most of the content is written by men. In addition, although there are specific guidelines of verifiability, notability, and neutral point of view that must be adhered by Wikipedia content, these guidelines are supervised and enforced by men. In this paper, we propose that gender bias is not about participation and representation only, but also about characterization of women. We approach the analysis of gender bias by defining a methodology for comparing the characterizations of men and women in biographies in three aspects: meta-data, language, and network structure. Our results show that, indeed, there are differences in characterization and structure. Some of these differences are reflected from the off-line world documented by Wikipedia, but other differences can be attributed to gender bias in Wikipedia content. We contextualize these differences in feminist theory and discuss their implications for Wikipedia policy.Comment: 10 pages, ACM style. Author's version of a paper to be presented at ACM Hypertext 201

    Entity-centric knowledge discovery for idiosyncratic domains

    Get PDF
    Technical and scientific knowledge is produced at an ever-accelerating pace, leading to increasing issues when trying to automatically organize or process it, e.g., when searching for relevant prior work. Knowledge can today be produced both in unstructured (plain text) and structured (metadata or linked data) forms. However, unstructured content is still themost dominant formused to represent scientific knowledge. In order to facilitate the extraction and discovery of relevant content, new automated and scalable methods for processing, structuring and organizing scientific knowledge are called for. In this context, a number of applications are emerging, ranging fromNamed Entity Recognition (NER) and Entity Linking tools for scientific papers to specific platforms leveraging information extraction techniques to organize scientific knowledge. In this thesis, we tackle the tasks of Entity Recognition, Disambiguation and Linking in idiosyncratic domains with an emphasis on scientific literature. Furthermore, we study the related task of co-reference resolution with a specific focus on named entities. We start by exploring Named Entity Recognition, a task that aims to identify the boundaries of named entities in textual contents. We propose a newmethod to generate candidate named entities based on n-gram collocation statistics and design several entity recognition features to further classify them. In addition, we show how the use of external knowledge bases (either domain-specific like DBLP or generic like DBPedia) can be leveraged to improve the effectiveness of NER for idiosyncratic domains. Subsequently, we move to Entity Disambiguation, which is typically performed after entity recognition in order to link an entity to a knowledge base. We propose novel semi-supervised methods for word disambiguation leveraging the structure of a community-based ontology of scientific concepts. Our approach exploits the graph structure that connects different terms and their definitions to automatically identify the correct sense that was originally picked by the authors of a scientific publication. We then turn to co-reference resolution, a task aiming at identifying entities that appear using various forms throughout the text. We propose an approach to type entities leveraging an inverted index built on top of a knowledge base, and to subsequently re-assign entities based on the semantic relatedness of the introduced types. Finally, we describe an application which goal is to help researchers discover and manage scientific publications. We focus on the problem of selecting relevant tags to organize collections of research papers in that context. We experimentally demonstrate that the use of a community-authored ontology together with information about the position of the concepts in the documents allows to significantly increase the precision of tag selection over standard methods

    Topic Distiller:distilling semantic topics from documents

    Get PDF
    Abstract. This thesis details the design and implementation of a system that can find relevant and latent semantic topics from textual documents. The design of this system, named Topic Distiller, is inspired by research conducted on automatic keyphrase extraction and automatic topic labeling, and it employs entity linking and knowledge bases to reduce text documents to their semantic topics. The Topic Distiller is evaluated using methods and datasets used in information retrieval and automatic keyphrase extraction. On top of the common datasets used in the literature three additional datasets are created to evaluate the system. The evaluation reveals that the Topic Distiller is able to find relevant and latent topics from textual documents, beating the state-of-the-art automatic keyphrase methods in performance when used on news articles and social media posts.Semanttisten aiheiden suodattaminen dokumenteista. Tiivistelmä. Tässä diplomityössä tarkastellaan järjestelmää, joka pystyy löytämään tekstistä relevantteja ja piileviä semanttisia aihealueita, sekä kyseisen järjestelmän suunnittelua ja implementaatiota. Tämän Topic Distiller -järjestelmän suunnittelu ammentaa inspiraatiota automaattisen termintunnistamisen ja automaattisen aiheiden nimeämisen tutkimuksesta sekä hyödyntää automaattista semanttista annotointia ja tietämyskantoja tekstin aihealueiden löytämisessä. Topic Distiller -järjestelmän suorituskykyä mitataan hyödyntämällä kirjallisuudessa paljon käytettyjä automaattisen termintunnistamisen evaluontimenetelmiä ja aineistoja. Näiden yleisten aineistojen lisäksi esittelemme kolme uutta aineistoa, jotka on luotu Topic Distiller -järjestelmän arviointia varten. Evaluointi tuo ilmi, että Topic Distiller kykenee löytämään relevantteja ja piileviä aiheita tekstistä. Se päihittää kirjallisuuden viimeisimmät automaattisen termintunnistamisen menetelmät suorituskyvyssä, kun sitä käytetään uutisartikkelien sekä sosiaalisen median julkaisujen analysointiin

    The Computer Science Ontology: A Comprehensive Automatically-Generated Taxonomy of Research Areas

    Get PDF
    Ontologies of research areas are important tools for characterising, exploring, and analysing the research landscape. Some fields of research are comprehensively described by large-scale taxonomies, e.g., MeSH in Biology and PhySH in Physics. Conversely, current Computer Science taxonomies are coarse-grained and tend to evolve slowly. For instance, the ACM classification scheme contains only about 2K research topics and the last version dates back to 2012. In this paper, we introduce the Computer Science Ontology (CSO), a large-scale, automatically generated ontology of research areas, which includes about 14K topics and 162K semantic relationships. It was created by applying the Klink-2 algorithm on a very large dataset of 16M scientific articles. CSO presents two main advantages over the alternatives: i) it includes a very large number of topics that do not appear in other classifications, and ii) it can be updated automatically by running Klink-2 on recent corpora of publications. CSO powers several tools adopted by the editorial team at Springer Nature and has been used to enable a variety of solutions, such as classifying research publications, detecting research communities, and predicting research trends. To facilitate the uptake of CSO, we have also released the CSO Classifier, a tool for automatically classifying research papers, and the CSO Portal, a web application that enables users to download, explore, and provide granular feedback on CSO. Users can use the portal to navigate and visualise sections of the ontology, rate topics and relationships, and suggest missing ones. The portal will support the publication of and access to regular new releases of CSO, with the aim of providing a comprehensive resource to the various research communities engaged with scholarly data
    corecore