1,641 research outputs found

    Semantic attack on transaction data anonymised by set-based generalisation

    Get PDF
    Publishing data that contains information about individuals may lead to privacy breaches. However, data publishing is useful to support research and analysis. Therefore, privacy protection in data publishing becomes important and has received much recent attention. To improve privacy protection, many researchers have investigated how secure the published data is by designing de-anonymisation methods to attack anonymised data. Most of the de-anonymisation methods consider anonymised data in a syntactic manner. That is, items in a dataset are considered to be contextless or even meaningless literals, and they have not considered the semantics of these data items. In this thesis, we investigate how secure the anonymised data is under attacks that use semantic information. More specifically, we propose a de-anonymisation method to attack transaction data anonymised by set-based generalisation. Set-based generalisation protects data by replacing one item by a set of items, so that the identity of an individual can be hidden. Our goal is to identify those items that are added to a transaction during generalisation. Our attacking method has two components: scoring and elimination. Scoring measures semantic relationship between items in a transaction, and elimination removes items that are deemed not to be in the original transaction. Our experiments on both real and synthetic data show that set-based generalisation may not provide adequate protection for transaction data, and about 70% of the items added to the transactions during generalisation can be detected by our method with a precision greater than 85%

    User's Privacy in Recommendation Systems Applying Online Social Network Data, A Survey and Taxonomy

    Full text link
    Recommender systems have become an integral part of many social networks and extract knowledge from a user's personal and sensitive data both explicitly, with the user's knowledge, and implicitly. This trend has created major privacy concerns as users are mostly unaware of what data and how much data is being used and how securely it is used. In this context, several works have been done to address privacy concerns for usage in online social network data and by recommender systems. This paper surveys the main privacy concerns, measurements and privacy-preserving techniques used in large-scale online social networks and recommender systems. It is based on historical works on security, privacy-preserving, statistical modeling, and datasets to provide an overview of the technical difficulties and problems associated with privacy preserving in online social networks.Comment: 26 pages, IET book chapter on big data recommender system

    Garantia de privacidade na exploração de bases de dados distribuídas

    Get PDF
    Anonymisation is currently one of the biggest challenges when sharing sensitive personal information. Its importance depends largely on the application domain, but when dealing with health information, this becomes a more serious issue. A simpler approach to avoid this disclosure is to ensure that all data that can be associated directly with an individual is removed from the original dataset. However, some studies have shown that simple anonymisation procedures can sometimes be reverted using specific patients’ characteristics, namely when the anonymisation is based on hidden key attributes. In this work, we propose a secure architecture to share information from distributed databases without compromising the subjects’ privacy. The work was initially focused on identifying techniques to link information between multiple data sources, in order to revert the anonymization procedures. In a second phase, we developed the methodology to perform queries over distributed databases was proposed. The architecture was validated using a standard data schema that is widely adopted in observational research studies.A garantia da anonimização de dados é atualmente um dos maiores desafios quando existe a necessidade de partilhar informações pessoais de carácter sensível. Apesar de ser um problema transversal a muitos domínios de aplicação, este torna-se mais crítico quando a anonimização envolve dados clinicos. Nestes casos, a abordagem mais comum para evitar a divulgação de dados, que possam ser associados diretamente a um indivíduo, consiste na remoção de atributos identificadores. No entanto, segundo a literatura, esta abordagem não oferece uma garantia total de anonimato, que pode ser quebrada através de ataques específicos que permitem a reidentificação dos sujeitos. Neste trabalho, é proposta uma arquitetura que permite partilhar dados armazenados em repositórios distribuídos, de forma segura e sem comprometer a privacidade. Numa primeira fase deste trabalho, foi feita uma análise de técnicas que permitam reverter os procedimentos de anonimização. Na fase seguinte, foi proposta uma metodologia que permite realizar pesquisas em bases de dados distribuídas, sem que o anonimato seja quebrado. Esta arquitetura foi validada sobre um esquema de base de dados relacional que é amplamente utilizado em estudos clínicos observacionais.Mestrado em Ciberseguranç

    Semantic attack on disassociated transaction data

    Get PDF
    Accessing and sharing information, including personal data, has become easier and faster than ever because of the Internet. Therefore, businesses have started to take advantage of the availability of data by gathering, analysing, and utilising individuals’ data for various purposes, such as developing data-driven products and services that can help improve customer satisfaction and retention, and lead to better healthcare and well-being provisions. However, analysing these data freely may violate individuals’ privacy. This has prompted the development of protection methods that can deter potential privacy threats by anonymising data. Disassociation is one anonymisation approach used to protect transaction data. It works by dividing data into chunks to conceal sensitive links between the items in a transaction, but it does not account for semantic relationships that may exist among the items, which adversaries can exploit to reveal protected links. We show that our proposed de-anonymisation approach could break the privacy protection offered by the disassociation method by exploiting such semantic relationships. Our findings indicate that the disassociation method may not provide adequate protection for transactions: up to 60% of the disassociated items can be reassociated, thereby breaking the privacy of nearly 70% of the protected items. In this paper [an extension to our work reported in AlShuhail and Shao (Semantic attack on disassociated transactions. In: Proceedings of the 8th International Conference on information systems security and privacy-ICISSP, INSTICC. SciTePress, pp. 60–72, 2022)], we develop additional techniques to reconstruct transactions, with additional experiments to illustrate the impact of our attacking method

    Semantic attack on anonymised transaction data

    Get PDF
    Publishing data about individuals is a double-edged sword; it can provide a significant benefit for a range of organisations to help understand issues concerning individuals, and improve services they offer. However, it can also represent a serious threat to individuals’ privacy. To overcome these threats, researchers have worked on developing anonymisation methods. However, the anonymisation methods do not take into consideration the semantic relationships and meaning of data, which can be exploited by attackers to expose protected data. In our work, we study a specific anonymisation method called disassociation and investigate if it provides adequate protection for transaction data. The disassociation method hides sensitive links between transaction’s items by dividing them into chunks. We propose a de-anonymisation approach to attacking transaction data anonymised by the disassociated data. The approach exploits the semantic relationships between transaction items to reassociate them. Our findings reveal that the disassociation method may not effectively protect transaction data. Our de-anonymisation approach can recombine approximately 60% of the disassociated items and can break the privacy of nearly 70% of the protected itemets in disassociated transactions
    • …
    corecore