3,354 research outputs found

    Linked Data based video annotation and browsing for distance learning

    Get PDF
    We present a pair of prototype tools that enable users to mark up video with annotations and later explore related materials using Semantic Web and Linked Data approaches. The ïżœfirst tool helps academics preparing Open University course materials to mark up videos with information about the subject matter and audio-visual content. The second tool enables users, such as students or academics, to find video and other materials relevant to their study

    A General Framework for Representing, Reasoning and Querying with Annotated Semantic Web Data

    Full text link
    We describe a generic framework for representing and reasoning with annotated Semantic Web data, a task becoming more important with the recent increased amount of inconsistent and non-reliable meta-data on the web. We formalise the annotated language, the corresponding deductive system and address the query answering problem. Previous contributions on specific RDF annotation domains are encompassed by our unified reasoning formalism as we show by instantiating it on (i) temporal, (ii) fuzzy, and (iii) provenance annotations. Moreover, we provide a generic method for combining multiple annotation domains allowing to represent, e.g. temporally-annotated fuzzy RDF. Furthermore, we address the development of a query language -- AnQL -- that is inspired by SPARQL, including several features of SPARQL 1.1 (subqueries, aggregates, assignment, solution modifiers) along with the formal definitions of their semantics

    An Incremental Learning Method to Support the Annotation of Workflows with Data-to-Data Relations

    Get PDF
    Workflow formalisations are often focused on the representation of a process with the primary objective to support execution. However, there are scenarios where what needs to be represented is the effect of the process on the data artefacts involved, for example when reasoning over the corresponding data policies. This can be achieved by annotating the workflow with the semantic relations that occur between these data artefacts. However, manually producing such annotations is difficult and time consuming. In this paper we introduce a method based on recommendations to support users in this task. Our approach is centred on an incremental rule association mining technique that allows to compensate the cold start problem due to the lack of a training set of annotated workflows. We discuss the implementation of a tool relying on this approach and how its application on an existing repository of workflows effectively enable the generation of such annotations

    Information extraction from multimedia web documents: an open-source platform and testbed

    No full text
    The LivingKnowledge project aimed to enhance the current state of the art in search, retrieval and knowledge management on the web by advancing the use of sentiment and opinion analysis within multimedia applications. To achieve this aim, a diverse set of novel and complementary analysis techniques have been integrated into a single, but extensible software platform on which such applications can be built. The platform combines state-of-the-art techniques for extracting facts, opinions and sentiment from multimedia documents, and unlike earlier platforms, it exploits both visual and textual techniques to support multimedia information retrieval. Foreseeing the usefulness of this software in the wider community, the platform has been made generally available as an open-source project. This paper describes the platform design, gives an overview of the analysis algorithms integrated into the system and describes two applications that utilise the system for multimedia information retrieval

    PAV ontology: provenance, authoring and versioning

    Get PDF
    Provenance is a critical ingredient for establishing trust of published scientific content. This is true whether we are considering a data set, a computational workflow, a peer-reviewed publication or a simple scientific claim with supportive evidence. Existing vocabularies such as DC Terms and the W3C PROV-O are domain-independent and general-purpose and they allow and encourage for extensions to cover more specific needs. We identify the specific need for identifying or distinguishing between the various roles assumed by agents manipulating digital artifacts, such as author, contributor and curator. We present the Provenance, Authoring and Versioning ontology (PAV): a lightweight ontology for capturing just enough descriptions essential for tracking the provenance, authoring and versioning of web resources. We argue that such descriptions are essential for digital scientific content. PAV distinguishes between contributors, authors and curators of content and creators of representations in addition to the provenance of originating resources that have been accessed, transformed and consumed. We explore five projects (and communities) that have adopted PAV illustrating their usage through concrete examples. Moreover, we present mappings that show how PAV extends the PROV-O ontology to support broader interoperability. The authors strived to keep PAV lightweight and compact by including only those terms that have demonstrated to be pragmatically useful in existing applications, and by recommending terms from existing ontologies when plausible. We analyze and compare PAV with related approaches, namely Provenance Vocabulary, DC Terms and BIBFRAME. We identify similarities and analyze their differences with PAV, outlining strengths and weaknesses of our proposed model. We specify SKOS mappings that align PAV with DC Terms.Comment: 22 pages (incl 5 tables and 19 figures). Submitted to Journal of Biomedical Semantics 2013-04-26 (#1858276535979415). Revised article submitted 2013-08-30. Second revised article submitted 2013-10-06. Accepted 2013-10-07. Author proofs sent 2013-10-09 and 2013-10-16. Published 2013-11-22. Final version 2013-12-06. http://www.jbiomedsem.com/content/4/1/3

    The CKC Challenge: Exploring Tools for Collaborative Knowledge Construction

    Get PDF
    The great success of Web 2.0 is mainly fuelled by an infrastructure that allows web users to create, share, tag, and connect content and knowledge easily. The tools for developing structured knowledge in this manner have started to appear as well. However, there are few, if any, user studies that are aimed at understanding what users expect from such tools, what works and what doesn't. We organized the Collaborative Knowledge Construction (CKC) Challenge to assess the state of the art for the tools that support collaborative processes for creation of various forms of structured knowledge. The goal of the Challenge was to get users to try out different tools and to learn what users expect from such tools /features that users need, features that they like or dislike. The Challenge task was to construct structured knowledge for a portal that would provide information about research. The Challenge design contained several incentives for users to participate. Forty-nine users registered for the Challenge; thirty three of them participated actively by using the tools. We collected extensive feedback from the users where they discussed their thoughts on all the tools that they tried. In this paper, we present the results of the Challenge, discuss the features that users expect from tools for collaborative knowledge constructions, the features on which Challenge participants disagreed, and the lessons that we learned

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    Image annotation with Photocopain

    Get PDF
    Photo annotation is a resource-intensive task, yet is increasingly essential as image archives and personal photo collections grow in size. There is an inherent conflict in the process of describing and archiving personal experiences, because casual users are generally unwilling to expend large amounts of effort on creating the annotations which are required to organise their collections so that they can make best use of them. This paper describes the Photocopain system, a semi-automatic image annotation system which combines information about the context in which a photograph was captured with information from other readily available sources in order to generate outline annotations for that photograph that the user may further extend or amend
    • 

    corecore