2,713 research outputs found

    The development of non-coding RNA ontology

    Get PDF
    Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data

    Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space?

    Get PDF
    The organization and mining of malaria genomic and post-genomic data is highly motivated by the necessity to predict and characterize new biological targets and new drugs. Biological targets are sought in a biological space designed from the genomic data from Plasmodium falciparum, but using also the millions of genomic data from other species. Drug candidates are sought in a chemical space containing the millions of small molecules stored in public and private chemolibraries. Data management should therefore be as reliable and versatile as possible. In this context, we examined five aspects of the organization and mining of malaria genomic and post-genomic data: 1) the comparison of protein sequences including compositionally atypical malaria sequences, 2) the high throughput reconstruction of molecular phylogenies, 3) the representation of biological processes particularly metabolic pathways, 4) the versatile methods to integrate genomic data, biological representations and functional profiling obtained from X-omic experiments after drug treatments and 5) the determination and prediction of protein structures and their molecular docking with drug candidate structures. Progresses toward a grid-enabled chemogenomic knowledge space are discussed.Comment: 43 pages, 4 figures, to appear in Malaria Journa

    Semi-supervised prediction of protein interaction sentences exploiting semantically encoded metrics

    Get PDF
    Protein-protein interaction (PPI) identification is an integral component of many biomedical research and database curation tools. Automation of this task through classification is one of the key goals of text mining (TM). However, labelled PPI corpora required to train classifiers are generally small. In order to overcome this sparsity in the training data, we propose a novel method of integrating corpora that do not contain relevance judgements. Our approach uses a semantic language model to gather word similarity from a large unlabelled corpus. This additional information is integrated into the sentence classification process using kernel transformations and has a re-weighting effect on the training features that leads to an 8% improvement in F-score over the baseline results. Furthermore, we discover that some words which are generally considered indicative of interactions are actually neutralised by this process

    Metrics for GO based protein semantic similarity: a systematic evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several semantic similarity measures have been applied to gene products annotated with Gene Ontology terms, providing a basis for their functional comparison. However, it is still unclear which is the best approach to semantic similarity in this context, since there is no conclusive evaluation of the various measures. Another issue, is whether electronic annotations should or not be used in semantic similarity calculations.</p> <p>Results</p> <p>We conducted a systematic evaluation of GO-based semantic similarity measures using the relationship with sequence similarity as a means to quantify their performance, and assessed the influence of electronic annotations by testing the measures in the presence and absence of these annotations. We verified that the relationship between semantic and sequence similarity is not linear, but can be well approximated by a rescaled Normal cumulative distribution function. Given that the majority of the semantic similarity measures capture an identical behaviour, but differ in resolution, we used the latter as the main criterion of evaluation.</p> <p>Conclusions</p> <p>This work has provided a basis for the comparison of several semantic similarity measures, and can aid researchers in choosing the most adequate measure for their work. We have found that the hybrid <it>simGIC</it> was the measure with the best overall performance, followed by Resnik's measure using a best-match average combination approach. We have also found that the average and maximum combination approaches are problematic since both are inherently influenced by the number of terms being combined. We suspect that there may be a direct influence of data circularity in the behaviour of the results including electronic annotations, as a result of functional inference from sequence similarity.</p

    Agents in Bioinformatics

    No full text
    The scope of the Technical Forum Group (TFG) on Agents in Bioinformatics (BIOAGENTS) was to inspire collaboration between the agent and bioinformatics communities with the aim of creating an opportunity to propose a different (agent-based) approach to the development of computational frameworks both for data analysis in bioinformatics and for system modelling in computational biology. During the day, the participants examined the future of research on agents in bioinformatics primarily through 12 invited talks selected to cover the most relevant topics. From the discussions, it became clear that there are many perspectives to the field, ranging from bio-conceptual languages for agent-based simulation, to the definition of bio-ontology-based declarative languages for use by information agents, and to the use of Grid agents, each of which requires further exploration. The interactions between participants encouraged the development of applications that describe a way of creating agent-based simulation models of biological systems, starting from an hypothesis and inferring new knowledge (or relations) by mining and analysing the huge amount of public biological data. In this report we summarise and reflect on the presentations and discussions

    Gene Function Classification Using Bayesian Models with Hierarchy-Based Priors

    Get PDF
    We investigate the application of hierarchical classification schemes to the annotation of gene function based on several characteristics of protein sequences including phylogenic descriptors, sequence based attributes, and predicted secondary structure. We discuss three Bayesian models and compare their performance in terms of predictive accuracy. These models are the ordinary multinomial logit (MNL) model, a hierarchical model based on a set of nested MNL models, and a MNL model with a prior that introduces correlations between the parameters for classes that are nearby in the hierarchy. We also provide a new scheme for combining different sources of information. We use these models to predict the functional class of Open Reading Frames (ORFs) from the E. coli genome. The results from all three models show substantial improvement over previous methods, which were based on the C5 algorithm. The MNL model using a prior based on the hierarchy outperforms both the non-hierarchical MNL model and the nested MNL model. In contrast to previous attempts at combining these sources of information, our approach results in a higher accuracy rate when compared to models that use each data source alone. Together, these results show that gene function can be predicted with higher accuracy than previously achieved, using Bayesian models that incorporate suitable prior information

    Finding the “Dark Matter” in Human and Yeast Protein Network Prediction and Modelling

    Get PDF
    Accurate modelling of biological systems requires a deeper and more complete knowledge about the molecular components and their functional associations than we currently have. Traditionally, new knowledge on protein associations generated by experiments has played a central role in systems modelling, in contrast to generally less trusted bio-computational predictions. However, we will not achieve realistic modelling of complex molecular systems if the current experimental designs lead to biased screenings of real protein networks and leave large, functionally important areas poorly characterised. To assess the likelihood of this, we have built comprehensive network models of the yeast and human proteomes by using a meta-statistical integration of diverse computationally predicted protein association datasets. We have compared these predicted networks against combined experimental datasets from seven biological resources at different level of statistical significance. These eukaryotic predicted networks resemble all the topological and noise features of the experimentally inferred networks in both species, and we also show that this observation is not due to random behaviour. In addition, the topology of the predicted networks contains information on true protein associations, beyond the constitutive first order binary predictions. We also observe that most of the reliable predicted protein associations are experimentally uncharacterised in our models, constituting the hidden or “dark matter” of networks by analogy to astronomical systems. Some of this dark matter shows enrichment of particular functions and contains key functional elements of protein networks, such as hubs associated with important functional areas like the regulation of Ras protein signal transduction in human cells. Thus, characterising this large and functionally important dark matter, elusive to established experimental designs, may be crucial for modelling biological systems. In any case, these predictions provide a valuable guide to these experimentally elusive regions

    Finding the "Dark Matter'' in Human and Yeast Protein Network Prediction and Modelling

    Get PDF
    Accurate modelling of biological systems requires a deeper and more complete knowledge about the molecular components and their functional associations than we currently have. Traditionally, new knowledge on protein associations generated by experiments has played a central role in systems modelling, in contrast to generally less trusted bio-computational predictions. However, we will not achieve realistic modelling of complex molecular systems if the current experimental designs lead to biased screenings of real protein networks and leave large, functionally important areas poorly characterised. To assess the likelihood of this, we have built comprehensive network models of the yeast and human proteomes by using a meta-statistical integration of diverse computationally predicted protein association datasets. We have compared these predicted networks against combined experimental datasets from seven biological resources at different level of statistical significance. These eukaryotic predicted networks resemble all the topological and noise features of the experimentally inferred networks in both species, and we also show that this observation is not due to random behaviour. In addition, the topology of the predicted networks contains information on true protein associations, beyond the constitutive first order binary predictions. We also observe that most of the reliable predicted protein associations are experimentally uncharacterised in our models, constituting the hidden or "dark matter'' of networks by analogy to astronomical systems. Some of this dark matter shows enrichment of particular functions and contains key functional elements of protein networks, such as hubs associated with important functional areas like the regulation of Ras protein signal transduction in human cells. Thus, characterising this large and functionally important dark matter, elusive to established experimental designs, may be crucial for modelling biological systems. In any case, these predictions provide a valuable guide to these experimentally elusive regions

    Prediction of Metabolic Pathways Involvement in Prokaryotic UniProtKB Data by Association Rule Mining

    Full text link
    The widening gap between known proteins and their functions has encouraged the development of methods to automatically infer annotations. Automatic functional annotation of proteins is expected to meet the conflicting requirements of maximizing annotation coverage, while minimizing erroneous functional assignments. This trade-off imposes a great challenge in designing intelligent systems to tackle the problem of automatic protein annotation. In this work, we present a system that utilizes rule mining techniques to predict metabolic pathways in prokaryotes. The resulting knowledge represents predictive models that assign pathway involvement to UniProtKB entries. We carried out an evaluation study of our system performance using cross-validation technique. We found that it achieved very promising results in pathway identification with an F1-measure of 0.982 and an AUC of 0.987. Our prediction models were then successfully applied to 6.2 million UniProtKB/TrEMBL reference proteome entries of prokaryotes. As a result, 663,724 entries were covered, where 436,510 of them lacked any previous pathway annotations

    Human protein function prediction: application of machine learning for integration of heterogeneous data sources

    Get PDF
    Experimental characterisation of protein cellular function can be prohibitively expensive and take years to complete. To address this problem, this thesis focuses on the development of computational approaches to predict function from sequence. For sequences with well characterised close relatives, annotation is trivial, orphans or distant homologues present a greater challenge. The use of a feature based method employing ensemble support vector machines to predict individual Gene Ontology classes is investigated. It is found that different combinations of feature inputs are required to recognise different functions. Although the approach is applicable to any human protein sequence, it is restricted to broadly descriptive functions. The method is well suited to prioritisation of candidate functions for novel proteins rather than to make highly accurate class assignments. Signatures of common function can be derived from different biological characteristics; interactions and binding events as well as expression behaviour. To investigate the hypothesis that common function can be derived from expression information, public domain human microarray datasets are assembled. The questions of how best to integrate these datasets and derive features that are useful in function prediction are addressed. Both co-expression and abundance information is represented between and within experiments and investigated for correlation with function. It is found that features derived from expression data serve as a weak but significant signal for recognising functions. This signal is stronger for biological processes than molecular function categories and independent of homology information. The protein domain has historically been coined as a modular evolutionary unit of protein function. The occurrence of domains that can be linked by ancestral fusion events serves as a signal for domain-domain interactions. To exploit this information for function prediction, novel domain architecture and fused architecture scores are developed. Architecture scores rather than single domain scores correlate more strongly with function, and both architecture and fusion scores correlate more strongly with molecular functions than biological processes. The final study details the development of a novel heterogeneous function prediction approach designed to target the annotation of both homologous and non-homologous proteins. Support vector regression is used to combine pair-wise sequence features with expression scores and domain architecture scores to rank protein pairs in terms of their functional similarities. The target of the regression models represents the continuum of protein function space empirically derived from the Gene Ontology molecular function and biological process graphs. The merit and performance of the approach is demonstrated using homologous and non-homologous test datasets and significantly improves upon classical nearest neighbour annotation transfer by sequence methods. The final model represents a method that achieves a compromise between high specificity and sensitivity for all human proteins regardless of their homology status. It is expected that this strategy will allow for more comprehensive and accurate annotations of the human proteome
    corecore