136 research outputs found

    Temporal decision making using unsupervised learning

    Get PDF
    With the explosion of ubiquitous continuous sensing, on-line streaming clustering continues to attract attention. The requirements are that the streaming clustering algorithm recognize and adapt clusters as the data evolves, that anomalies are detected, and that new clusters are automatically formed as incoming data dictate. In this dissertation, we develop a streaming clustering algorithm, MU Streaming Clustering (MUSC), that is based on coupling a Gaussian mixture model (GMM) with possibilistic clustering to build an adaptive system for analyzing streaming multi-dimensional activity feature vectors. For this reason, the possibilistic C-Means (PCM) and Automatic Merging Possibilistic Clustering Method (AMPCM) are combined together to cluster the initial data points, detect anomalies and initialize the GMM. MUSC achieves our goals when tested on synthetic and real-life datasets. We also compare MUSC's performance with Sequential k-means (sk-means), Basic Sequential Clustering Algorithm (BSAS), and Modified BSAS (MBSAS) here MUSC shows superiority in the performance and accuracy. The performance of a streaming clustering algorithm needs to be monitored over time to understand the behavior of the streaming data in terms of new emerging clusters and number of outlier data points. Incremental internal Validity Indices (iCVIs) are used to monitor the performance of an on-line clustering algorithm. We study the internal incremental Davies-Bouldin (DB), Xie-Beni (XB), and Dunn internal cluster validity indices in the context of streaming data analysis. We extend the original incremental DB (iDB) to a more general version parameterized by the exponent of membership weights. Then we illustrate how the iDB can be used to analyze and understand the performance of MUSC algorithm. We give examples that illustrate the appearance of a new cluster, the effect of different cluster sizes, handling of outlier data samples, and the effect of the input order on the resultant cluster history. In addition, we investigate the internal incremental Davies-Bouldin (iDB) cluster validity index in the context of big streaming data analysis. We analyze the effect of large numbers of samples on the values of the iCVI (iDB). We also develop online versions of two modified generalized Dunn's indices that can be used for dynamic evaluation of evolving (cluster) structure in streaming data. We argue that this method is a good way to monitor the ongoing performance of online clustering algorithms and we illustrate several types of inferences that can be drawn from such indices. We compare the two new indices to the incremental Xie-Beni and Davies-Bouldin indices, which to our knowledge offer the only comparable approach, with numerical examples on a variety of synthetic and real data sets. We also study the performance of MUSC and iCVIs with big streaming data applications. We show the advantage of iCVIs in monitoring large streaming datasets and in providing useful information about the data stream in terms of emergence of a new structure, amount of outlier data, size of the clusters, and order of data samples in each cluster. We also propose a way to project streaming data into a lower space for cases where the distance measure does not perform as expected in the high dimensional space. Another example of streaming is the data acivity data coming from TigerPlace and other elderly residents' apartments in and around Columbia. MO. TigerPlace is an eldercare facility that promotes aging-in-place in Columbia Missouri. Eldercare monitoring using non-wearable sensors is a candidate solution for improving care and reducing costs. Abnormal sensor patterns produced by certain resident behaviors could be linked to early signs of illness. We propose an unsupervised method for detecting abnormal behavior patterns based on a new context preserving representation of daily activities. A preliminary analysis of the method was conducted on data collected in TigerPlace. Sensor firings of each day are converted into sequences of daily activities. Then, building a histogram from the daily sequences of a resident, we generate a single data vector representing that day. Using the proposed method, a day with hundreds of sequences is converted into a single data point representing that day and preserving the context of the daily routine at the same time. We obtained an average Area Under the Curve (AUC) of 0.9 in detecting days where elder adults need to be assessed. Our approach outperforms other approaches on the same datset. Using the context preserving representation, we develoed a multi-dimensional alert system to improve the existing single-dimensional alert system in TigerPlace. Also, this represenation is used to develop a framework that utilizes sensor sequence similarity and medical concepts extracted from the EHR to automatically inform the nursing staff when health problems are detected. Our context preserving representation of daily activities is used to measure the similarity between the sensor sequences of different days. The medical concepts are extracted from the nursing notes using MetamapLite, an NLP tool included in the Unified Medical Language System (UMLS). The proposed idea is validated on two pilot datasets from twelve Tiger Place residents, with a total of 5810 sensor days out of which 1966 had nursing notes

    Early detection of health changes in the elderly using in-home multi-sensor data streams

    Get PDF
    The rapid aging of the population worldwide requires increased attention from health care providers and the entire society. For the elderly to live independently, many health issues related to old age, such as frailty and risk of falling, need increased attention and monitoring. When monitoring daily routines for older adults, it is desirable to detect the early signs of health changes before serious health events, such as hospitalizations, happen, so that timely and adequate preventive care may be provided. By deploying multi-sensor systems in homes of the elderly, we can track trajectories of daily behaviors in a feature space defined using the sensor data. In this work, we investigate a methodology for learning data distribution from streaming data and tracking the evolution of the behavior trajectories over long periods (years) using high dimensional streaming clustering and provide very early indicators of changes in health. If we assume that habitual behaviors correspond to clusters in feature space and diseases produce a change in behavior, albeit not highly specific, tracking trajectory deviations can provide hints of early illness. Retrospectively, we visualize the streaming clustering results and track how the behavior clusters evolve in feature space with the help of two dimension-reduction algorithms, Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE). Moreover, our tracking algorithm in the original high dimensional feature space generates early health warning alerts if a negative trend is detected in the behavior trajectory. We validated our algorithm on synthetic data, real-world data and tested it on a pilot dataset of four TigerPlace residents monitored with a collection of motion, bed, and depth sensors over ten years. We used the TigerPlace electronic health records (EHR) to understand the residents' behavior patterns and to evaluate and explain the health warnings generated by our algorithm. The results obtained on the TigerPlace dataset show that most of the warnings produced by our algorithm can be linked to health events documented in the EHR, providing strong support for a prospective deployment of the approach.Includes bibliographical references

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe

    Preface

    Get PDF

    Patient-based Literature Retrieval and Integration: A Use Case for Diabetes and arterial Hypertension

    Get PDF
    Specialized search engines such as PubMed, MedScape or Cochrane have increased dramatically the visibility of biomedical scientific results. These web-based tools allow physicians to access scientific papers instantly. However, this decisive improvement had not a proportional impact in clinical practice due to the lack of advanced search methods. Even queries highly specified for a concrete pathology frequently retrieve too many information, with publications related to patients treated by the physician beyond the scope of the results examined. In this work we present a new method to improve scientific article search using patient information. Two pathologies have been used within the project to retrieve relevant literature to patient data and to be integrated with other sources. Promising results suggest the suitability of the approach, highlighting publications dealing with patient features and facilitating literature search to physicians

    A Semantic Web approach to ontology-based system: integrating, sharing and analysing IoT health and fitness data

    Get PDF
    With the rapid development of fitness industry, Internet of Things (IoT) technology is becoming one of the most popular trends for the health and fitness areas. IoT technologies have revolutionised the fitness and the sport industry by giving users the ability to monitor their health status and keep track of their training sessions. More and more sophisticated wearable devices, fitness trackers, smart watches and health mobile applications will appear in the near future. These systems do collect data non-stop from sensors and upload them to the Cloud. However, from a data-centric perspective the landscape of IoT fitness devices and wellness appliances is characterised by a plethora of representation and serialisation formats. The high heterogeneity of IoT data representations and the lack of common accepted standards, keep data isolated within each single system, preventing users and health professionals from having an integrated view of the various information collected. Moreover, in order to fully exploit the potential of the large amounts of data, it is also necessary to enable advanced analytics over it, thus achieving actionable knowledge. Therefore, due the above situation, the aim of this thesis project is to design and implement an ontology based system to (1) allow data interoperability among heterogeneous IoT fitness and wellness devices, (2) facilitate the integration and the sharing of information and (3) enable advanced analytics over the collected data (Cognitive Computing). The novelty of the proposed solution lies in exploiting Semantic Web technologies to formally describe the meaning of the data collected by the IoT devices and define a common communication strategy for information representation and exchange

    Towards a cascading reasoning framework to support responsive ambient-intelligent healthcare interventions

    Get PDF
    In hospitals and smart nursing homes, ambient-intelligent care rooms are equipped with many sensors. They can monitor environmental and body parameters, and detect wearable devices of patients and nurses. Hence, they continuously produce data streams. This offers the opportunity to collect, integrate and interpret this data in a context-aware manner, with a focus on reactivity and autonomy. However, doing this in real time on huge data streams is a challenging task. In this context, cascading reasoning is an emerging research approach that exploits the trade-off between reasoning complexity and data velocity by constructing a processing hierarchy of reasoners. Therefore, a cascading reasoning framework is proposed in this paper. A generic architecture is presented allowing to create a pipeline of reasoning components hosted locally, in the edge of the network, and in the cloud. The architecture is implemented on a pervasive health use case, where medically diagnosed patients are constantly monitored, and alarming situations can be detected and reacted upon in a context-aware manner. A performance evaluation shows that the total system latency is mostly lower than 5 s, allowing for responsive intervention by a nurse in alarming situations. Using the evaluation results, the benefits of cascading reasoning for healthcare are analyzed

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial
    • …
    corecore