9,787 research outputs found

    A core ontology for business process analysis

    Get PDF
    Business Process Management (BPM) aims at supporting the whole life-cycle necessary to deploy and maintain business processes in organisations. An important step of the BPM life-cycle is the analysis of the processes deployed in companies. However, the degree of automation currently achieved cannot support the level of adaptation required by businesses. Initial steps have been performed towards including some sort of automated reasoning within Business Process Analysis (BPA) but this is typically limited to using taxonomies. We present a core ontology aimed at enhancing the state of the art in BPA. The ontology builds upon a Time Ontology and is structured around the process, resource, and object perspectives as typically adopted when analysing business processes. The ontology has been extended and validated by means of an Events Ontology and an Events Analysis Ontology aimed at capturing the audit trails generated by Process-Aware Information Systems and deriving additional knowledge

    Semantic process mining tools: core building blocks

    Get PDF
    Process mining aims at discovering new knowledge based on information hidden in event logs. Two important enablers for such analysis are powerful process mining techniques and the omnipresence of event logs in today's information systems. Most information systems supporting (structured) business processes (e.g. ERP, CRM, and workflow systems) record events in some form (e.g. transaction logs, audit trails, and database tables). Process mining techniques use event logs for all kinds of analysis, e.g., auditing, performance analysis, process discovery, etc. Although current process mining techniques/tools are quite mature, the analysis they support is somewhat limited because it is purely based on labels in logs. This means that these techniques cannot benefit from the actual semantics behind these labels which could cater for more accurate and robust analysis techniques. Existing analysis techniques are purely syntax oriented, i.e., much time is spent on filtering, translating, interpreting, and modifying event logs given a particular question. This paper presents the core building blocks necessary to enable semantic process mining techniques/tools. Although the approach is highly generic, we focus on a particular process mining technique and show how this technique can be extended and implemented in the ProM framework tool

    An Incremental Learning Method to Support the Annotation of Workflows with Data-to-Data Relations

    Get PDF
    Workflow formalisations are often focused on the representation of a process with the primary objective to support execution. However, there are scenarios where what needs to be represented is the effect of the process on the data artefacts involved, for example when reasoning over the corresponding data policies. This can be achieved by annotating the workflow with the semantic relations that occur between these data artefacts. However, manually producing such annotations is difficult and time consuming. In this paper we introduce a method based on recommendations to support users in this task. Our approach is centred on an incremental rule association mining technique that allows to compensate the cold start problem due to the lack of a training set of annotated workflows. We discuss the implementation of a tool relying on this approach and how its application on an existing repository of workflows effectively enable the generation of such annotations

    Handling Data-Based Concurrency in Context-Aware Service Protocols

    Get PDF
    Dependency analysis is a technique to identify and determine data dependencies between service protocols. Protocols evolving concurrently in the service composition need to impose an order in their execution if there exist data dependencies. In this work, we describe a model to formalise context-aware service protocols. We also present a composition language to handle dynamically the concurrent execution of protocols. This language addresses data dependency issues among several protocols concurrently executed on the same user device, using mechanisms based on data semantic matching. Our approach aims at assisting the user in establishing priorities between these dependencies, avoiding the occurrence of deadlock situations. Nevertheless, this process is error-prone, since it requires human intervention. Therefore, we also propose verification techniques to automatically detect possible inconsistencies specified by the user while building the data dependency set. Our approach is supported by a prototype tool we have implemented.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    Context constraint integration and validation in dynamic web service compositions

    Get PDF
    System architectures that cross organisational boundaries are usually implemented based on Web service technologies due to their inherent interoperability benets. With increasing exibility requirements, such as on-demand service provision, a dynamic approach to service architecture focussing on composition at runtime is needed. The possibility of technical faults, but also violations of functional and semantic constraints require a comprehensive notion of context that captures composition-relevant aspects. Context-aware techniques are consequently required to support constraint validation for dynamic service composition. We present techniques to respond to problems occurring during the execution of dynamically composed Web services implemented in WS-BPEL. A notion of context { covering physical and contractual faults and violations { is used to safeguard composed service executions dynamically. Our aim is to present an architectural framework from an application-oriented perspective, addressing practical considerations of a technical framework

    Ontology-based metrics computation for business process analysis

    Get PDF
    Business Process Management (BPM) aims to support the whole life-cycle necessary to deploy and maintain business processes in organisations. Crucial within the BPM lifecycle is the analysis of deployed processes. Analysing business processes requires computing metrics that can help determining the health of business activities and thus the whole enterprise. However, the degree of automation currently achieved cannot support the level of reactivity and adaptation demanded by businesses. In this paper we argue and show how the use of Semantic Web technologies can increase to an important extent the level of automation for analysing business processes. We present a domain-independent ontological framework for Business Process Analysis (BPA) with support for automatically computing metrics. In particular, we define a set of ontologies for specifying metrics. We describe a domain-independent metrics computation engine that can interpret and compute them. Finally we illustrate and evaluate our approach with a set of general purpose metrics
    corecore