45 research outputs found

    Cost-sharing in generalised selfish routing

    Get PDF
    © Springer International Publishing AG 2017. We study a generalisation of atomic selfish routing games where each player may control multiple flows which she routes seek-ing to minimise their aggregate cost. Such games emerge in various set-tings, such as traffic routing in road networks by competing ride-sharing applications or packet routing in communication networks by competing service providers who seek to optimise the quality of service of their cus-tomers. We study the existence of pure Nash equilibria in the induced games and we exhibit a separation from the single-commodity per player model by proving that the Shapley value is the only cost-sharing method that guarantees it. We also prove that the price of anarchy and price of stability is no larger than in the single-commodity model for general cost-sharing methods and general classes of convex cost functions. We close by giving results on the existence of pure Nash equilibria of a splittable variant of our model

    Achieving target equilibria in network routing games without knowing the latency functions

    Get PDF
    The analysis of network routing games typically assumes precise, detailed information about the latency functions. Such information may, however, be unavailable or difficult to obtain. Moreover, one is often primarily interested in enforcing a desired target flow as an equilibrium. We ask whether one can achieve target flows as equilibria without knowing the underlying latency functions. We give a crisp positive answer to this question. We show that one can efficiently compute edge tolls that induce a given target multicommodity flow in a nonatomic routing game using a polynomial number of queries to an oracle that takes tolls as input and outputs the resulting equilibrium flow. This result is obtained via a novel application of the ellipsoid method, and extends to various other settings. We obtain improved query-complexity bounds for series-parallel networks, and single-commodity routing games with linear latency functions. Our techniques provide new insights into network routing games

    Existence and Efficiency of Equilibria for Cost-Sharing in Generalized Weighted Congestion Games

    Get PDF
    This work studies the impact of cost-sharing methods on the existence and efficiency of (pure) Nash equilibria in weighted congestion games. We also study generalized weighted congestion games, where each player may control multiple commodities. Our results are fairly general; we only require that our cost-sharing method and our set of cost functions satisfy certain natural conditions. For general weighted congestion games, we study the existence of pure Nash equilibria in the induced games, and we exhibit a separation from the standard single-commodity per player model by proving that the Shapley value is the only cost-sharing method that guarantees existence of pure Nash equilibria. With respect to efficiency, we present general tight bounds on the price of anarchy, which are robust and apply to general equilibrium concepts. Our analysis provides a tight bound on the price of anarchy, which depends only on the used cost-sharing method and the set of allowable cost functions. Interestingly, the same bound applies to weighted congestion games and generalized weighted congestion games. We then turn to the price of stability and prove an upper bound for the Shapley value cost-sharing method, which holds for general sets of cost functions and which is tight in special cases of interest, such as bounded degree polynomials. Also for bounded degree polynomials, we provide a somewhat surprising result, showing that a slight deviation from the Shapley value has a huge impact on the price of stability. In fact, for this case, the price of stability becomes as bad as the price of anarchy. Again, our bounds on the price of stability are independent on whether players are single or multi-commodity
    corecore