1,817 research outputs found

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Boltzmann meets Nash: Energy-efficient routing in optical networks under uncertainty

    Full text link
    Motivated by the massive deployment of power-hungry data centers for service provisioning, we examine the problem of routing in optical networks with the aim of minimizing traffic-driven power consumption. To tackle this issue, routing must take into account energy efficiency as well as capacity considerations; moreover, in rapidly-varying network environments, this must be accomplished in a real-time, distributed manner that remains robust in the presence of random disturbances and noise. In view of this, we derive a pricing scheme whose Nash equilibria coincide with the network's socially optimum states, and we propose a distributed learning method based on the Boltzmann distribution of statistical mechanics. Using tools from stochastic calculus, we show that the resulting Boltzmann routing scheme exhibits remarkable convergence properties under uncertainty: specifically, the long-term average of the network's power consumption converges within ε\varepsilon of its minimum value in time which is at most O~(1/ε2)\tilde O(1/\varepsilon^2), irrespective of the fluctuations' magnitude; additionally, if the network admits a strict, non-mixing optimum state, the algorithm converges to it - again, no matter the noise level. Our analysis is supplemented by extensive numerical simulations which show that Boltzmann routing can lead to a significant decrease in power consumption over basic, shortest-path routing schemes in realistic network conditions.Comment: 24 pages, 4 figure

    Design of Two-Level Incentive Mechanisms for Hierarchical Federated Learning

    Full text link
    Hierarchical Federated Learning (HFL) is a distributed machine learning paradigm tailored for multi-tiered computation architectures, which supports massive access of devices' models simultaneously. To enable efficient HFL, it is crucial to design suitable incentive mechanisms to ensure that devices actively participate in local training. However, there are few studies on incentive mechanism design for HFL. In this paper, we design two-level incentive mechanisms for the HFL with a two-tiered computing structure to encourage the participation of entities in each tier in the HFL training. In the lower-level game, we propose a coalition formation game to joint optimize the edge association and bandwidth allocation problem, and obtain efficient coalition partitions by the proposed preference rule, which can be proven to be stable by exact potential game. In the upper-level game, we design the Stackelberg game algorithm, which not only determines the optimal number of edge aggregations for edge servers to maximize their utility, but also optimize the unit reward provided for the edge aggregation performance to ensure the interests of cloud servers. Furthermore, numerical results indicate that the proposed algorithms can achieve better performance than the benchmark schemes
    corecore