4,068 research outputs found

    Panoramic Vision Transformer for Saliency Detection in 360{\deg} Videos

    Full text link
    360∘^\circ video saliency detection is one of the challenging benchmarks for 360∘^\circ video understanding since non-negligible distortion and discontinuity occur in the projection of any format of 360∘^\circ videos, and capture-worthy viewpoint in the omnidirectional sphere is ambiguous by nature. We present a new framework named Panoramic Vision Transformer (PAVER). We design the encoder using Vision Transformer with deformable convolution, which enables us not only to plug pretrained models from normal videos into our architecture without additional modules or finetuning but also to perform geometric approximation only once, unlike previous deep CNN-based approaches. Thanks to its powerful encoder, PAVER can learn the saliency from three simple relative relations among local patch features, outperforming state-of-the-art models for the Wild360 benchmark by large margins without supervision or auxiliary information like class activation. We demonstrate the utility of our saliency prediction model with the omnidirectional video quality assessment task in VQA-ODV, where we consistently improve performance without any form of supervision, including head movement.Comment: Published to ECCV202

    AssistGPT: A General Multi-modal Assistant that can Plan, Execute, Inspect, and Learn

    Full text link
    Recent research on Large Language Models (LLMs) has led to remarkable advancements in general NLP AI assistants. Some studies have further explored the use of LLMs for planning and invoking models or APIs to address more general multi-modal user queries. Despite this progress, complex visual-based tasks still remain challenging due to the diverse nature of visual tasks. This diversity is reflected in two aspects: 1) Reasoning paths. For many real-life applications, it is hard to accurately decompose a query simply by examining the query itself. Planning based on the specific visual content and the results of each step is usually required. 2) Flexible inputs and intermediate results. Input forms could be flexible for in-the-wild cases, and involves not only a single image or video but a mixture of videos and images, e.g., a user-view image with some reference videos. Besides, a complex reasoning process will also generate diverse multimodal intermediate results, e.g., video narrations, segmented video clips, etc. To address such general cases, we propose a multi-modal AI assistant, AssistGPT, with an interleaved code and language reasoning approach called Plan, Execute, Inspect, and Learn (PEIL) to integrate LLMs with various tools. Specifically, the Planner is capable of using natural language to plan which tool in Executor should do next based on the current reasoning progress. Inspector is an efficient memory manager to assist the Planner to feed proper visual information into a specific tool. Finally, since the entire reasoning process is complex and flexible, a Learner is designed to enable the model to autonomously explore and discover the optimal solution. We conducted experiments on A-OKVQA and NExT-QA benchmarks, achieving state-of-the-art results. Moreover, showcases demonstrate the ability of our system to handle questions far more complex than those found in the benchmarks.Comment: Project page: https://showlab.github.io/assistgpt

    Evaluating User Experience in Multisensory Meditative Virtual Reality: A Pilot Study

    Get PDF
    Virtual Reality (VR) is known for its ability to immerse users in a parallel universe. Accordingly, VR offers great potential for mindfulness therapy, especially in a post pandemic world. However, the extent to which our senses should be recruited to yield an optimal feeling of presence in the Virtual Environment (VE) remains unclear. This study investigates lived and perceived effects of adding auditory and motor components to VR experiences, through narration and head movements respectively. Twelve participants experienced four nature-based VR videos in a within-subjects research design. The study employed a mixed method approach of psychometric and neurophysiological measures. Results support a significant relationship between positive affect and presence. While statistical support was not obtained for the remaining relationships, this study provides a feasibility assessment of utilizing NeuroIS methods in evaluating immersive user experiences, along with qualitative insights that extend our understanding towards optimized VE designs

    Video Question Answering: Datasets, Algorithms and Challenges

    Full text link
    Video Question Answering (VideoQA) aims to answer natural language questions according to the given videos. It has earned increasing attention with recent research trends in joint vision and language understanding. Yet, compared with ImageQA, VideoQA is largely underexplored and progresses slowly. Although different algorithms have continually been proposed and shown success on different VideoQA datasets, we find that there lacks a meaningful survey to categorize them, which seriously impedes its advancements. This paper thus provides a clear taxonomy and comprehensive analyses to VideoQA, focusing on the datasets, algorithms, and unique challenges. We then point out the research trend of studying beyond factoid QA to inference QA towards the cognition of video contents, Finally, we conclude some promising directions for future exploration.Comment: Accepted by EMNLP 202

    WinDB: HMD-free and Distortion-free Panoptic Video Fixation Learning

    Full text link
    To date, the widely-adopted way to perform fixation collection in panoptic video is based on a head-mounted display (HMD), where participants' fixations are collected while wearing an HMD to explore the given panoptic scene freely. However, this widely-used data collection method is insufficient for training deep models to accurately predict which regions in a given panoptic are most important when it contains intermittent salient events. The main reason is that there always exist "blind zooms" when using HMD to collect fixations since the participants cannot keep spinning their heads to explore the entire panoptic scene all the time. Consequently, the collected fixations tend to be trapped in some local views, leaving the remaining areas to be the "blind zooms". Therefore, fixation data collected using HMD-based methods that accumulate local views cannot accurately represent the overall global importance of complex panoramic scenes. This paper introduces the auxiliary Window with a Dynamic Blurring (WinDB) fixation collection approach for panoptic video, which doesn't need HMD and is blind-zoom-free. Thus, the collected fixations can well reflect the regional-wise importance degree. Using our WinDB approach, we have released a new PanopticVideo-300 dataset, containing 300 panoptic clips covering over 225 categories. Besides, we have presented a simple baseline design to take full advantage of PanopticVideo-300 to handle the blind-zoom-free attribute-induced fixation shifting problem

    UniVTG: Towards Unified Video-Language Temporal Grounding

    Full text link
    Video Temporal Grounding (VTG), which aims to ground target clips from videos (such as consecutive intervals or disjoint shots) according to custom language queries (e.g., sentences or words), is key for video browsing on social media. Most methods in this direction develop taskspecific models that are trained with type-specific labels, such as moment retrieval (time interval) and highlight detection (worthiness curve), which limits their abilities to generalize to various VTG tasks and labels. In this paper, we propose to Unify the diverse VTG labels and tasks, dubbed UniVTG, along three directions: Firstly, we revisit a wide range of VTG labels and tasks and define a unified formulation. Based on this, we develop data annotation schemes to create scalable pseudo supervision. Secondly, we develop an effective and flexible grounding model capable of addressing each task and making full use of each label. Lastly, thanks to the unified framework, we are able to unlock temporal grounding pretraining from large-scale diverse labels and develop stronger grounding abilities e.g., zero-shot grounding. Extensive experiments on three tasks (moment retrieval, highlight detection and video summarization) across seven datasets (QVHighlights, Charades-STA, TACoS, Ego4D, YouTube Highlights, TVSum, and QFVS) demonstrate the effectiveness and flexibility of our proposed framework. The codes are available at https://github.com/showlab/UniVTG.Comment: Accepted by ICCV 2023. 16 pages, 10 figures, 13 tables. Code: https://github.com/showlab/UniVT
    • …
    corecore