9,185 research outputs found

    Function-led design of multifunctional stimuli-responsive superhydrophobic surface based on hierarchical graphene-titania nanocoating

    Full text link
    Multifunctional smart superhydrophobic surface with full-spectrum tunable wettability control is fabricated through the self-assembly of the graphene and titania nanofilm double-layer coating. Advanced microfluidic manipulative functions, including directional water transport, adhesion & spreading controls, droplet storage & transfer, and droplet sensing array, can be readily realized on this smart surface. An in-depth mechanism study regarding the underlying secrets of the tunable wettability and the UV-induced superhydrophilic conversion of anatase titania are also presented

    Efficient Thermal Image Segmentation through Integration of Nonlinear Enhancement with Unsupervised Active Contour Model

    Get PDF
    Thermal images are exploited in many areas of pattern recognition applications. Infrared thermal image segmentation can be used for object detection by extracting regions of abnormal temperatures. However, the lack of texture and color information, low signal-to-noise ratio, and blurring effect of thermal images make segmenting infrared heat patterns a challenging task. Furthermore, many segmentation methods that are used in visible imagery may not be suitable for segmenting thermal imagery mainly due to their dissimilar intensity distributions. Thus, a new method is proposed to improve the performance of image segmentation in thermal imagery. The proposed scheme efficiently utilizes nonlinear intensity enhancement technique and Unsupervised Active Contour Models (UACM). The nonlinear intensity enhancement improves visual quality by combining dynamic range compression and contrast enhancement, while the UACM incorporates active contour evolutional function and neural networks. The algorithm is tested on segmenting different objects in thermal images and it is observed that the nonlinear enhancement has significantly improved the segmentation performance

    Optical Yagi-Uda nanoantennas

    Get PDF
    Conventional antennas, which are widely employed to transmit radio and TV signals, can be used at optical frequencies as long as they are shrunk to nanometer-size dimensions. Optical nanoantennas made of metallic or high-permittivity dielectric nanoparticles allow for enhancing and manipulating light on the scale much smaller than wavelength of light. Based on this ability, optical nanoantennas offer unique opportunities regarding key applications such as optical communications, photovoltaics, non-classical light emission, and sensing. From a multitude of suggested nanoantenna concepts the Yagi-Uda nanoantenna, an optical analogue of the well-established radio-frequency Yagi-Uda antenna, stands out by its efficient unidirectional light emission and enhancement. Following a brief introduction to the emerging field of optical nanoantennas, here we review recent theoretical and experimental activities on optical Yagi-Uda nanoantennas, including their design, fabrication, and applications. We also discuss several extensions of the conventional Yagi-Uda antenna design for broadband and tunable operation, for applications in nanophotonic circuits and photovoltaic devices

    Sol-Gel Assembly of Metal Nanostructures into Metallic Gel Frameworks and Their Applications

    Get PDF
    The advent of nanoscience and nanotechnology has sparked many research forefronts in the creation of materials with control over size, shape, composition, and surface properties.1,2 However, for most of the applications, nanoscale materials need to be assembled into functional nanostructures that exhibit useful and controllable physical properties. Therefore, numerous efforts on the assembly of nanoparticles (NPs) using organic ligands, polymers and polyelectrolytes have been reported.3,4 However, the interactions between NPs are mediated by intervening ligands, which are detrimental to charge transport and limit the thermal stability. Hence, developing a new method to produce solid state nanostructures with direct NP linkage has become a significant challenge. To avoid the bridging ligands and improve the conductivity of NP based solid state structures, a novel strategy has been developed in which colloidal NPs undergo condensation to wet “jello-like” hydrogel with direct interfacial linkage. Then hydrogels can be dried supercritically to produce aerogels.5 Resultant nanostructures exhibit low densities, large open interconnected pores, and high internal surface areas and are containing entirely of colloidal metal NPs.6 Since noble metal NPs have been widely used in applications such as catalysts, sensors, and novel electrochemical device components, we herein expanded the sol-gel method to noble metal NPs to produce a new class of metal aerogels. In the dissertation, the synthesis of hollow Ag hollow NPs, Au/Ag alloy NPs, and Au/Pt/Ag alloy hollow NPs with tunable sizes and physical properties, and their oxidative-assembly into high-surface-area, mesoporous, self-supported gel framework has been achieved. The gelation kinetics have been controlled by tuning the oxidant/thiolate molar ratio that governs the rate of NP condensation, which in turn determines the morphology, optical transparency, surface area, and porosity of the gel frameworks. These low-density mesoporous nano-architectures displaying optical transparency or opacity, enormously surface area, and interconnected meso-to-macro pore structure are promising candidates for catalytic, electrocatalytic, and SERS-based sensing applications. The SERS activity of Au/Ag alloy aerogels has been studied and significant signal enhancement was achieved. The performance of the Au/Pt/Ag aerogel towards methanol oxidation reaction has been studied via cyclic voltammetry and significant electro-catalytic activity was observed
    corecore