74 research outputs found

    Collision-Aware Communication for Intersection Management of Automated Vehicles

    Get PDF
    Intersection management of automated vehicles relies on wireless communication, whereby communication resources should be allocated to vehicles while maintaining safety. We present a collision-aware resource allocation (CARA) strategy for coordination of automated and connected vehicles by a centralized intersection manager. The proposed strategy is based on a self-triggered approach and proactively reduces the risk of channel congestion by only assigning communication resources to vehicles that are in critical configurations, i.e., when there is a risk for a future collision. Compared with collision-agnostic communication strategies, typically considered for automated intersection management, the CARA strategy aims to bridge the gap between control, sensing, and communication. It is shown to significantly reduce the required amount of communication (albeit with a slight increase in the control cost), without compromising safety. Furthermore, control cost can be reduced by allowing more frequent communication, which we demonstrate through a trade-off analysis between control performance and communication load. Hence, CARA can operate in communication-limited scenarios, but also be modified for scenarios where the control cost is of primary interest

    Distributed scheduling algorithms for LoRa-based wide area cyber-physical systems

    Get PDF
    Low Power Wide Area Networks (LPWAN) are a class of wireless communication protocols that work over long distances, consume low power and support low datarates. LPWANs have been designed for monitoring applications, with sparse communication from nodes to servers and sparser from servers to nodes. Inspite of their initial design, LPWANs have the potential to target applications with higher and stricter requirements like those of Cyber-Physical Systems (CPS). Due to their long-range capabilities, LPWANs can specifically target CPS applications distributed over a wide-area, which is referred to as Wide-Area CPS (WA-CPS). Augmenting WA-CPSs with wireless communication would allow for more flexible, low-cost and easily maintainable deployment. However, wireless communications come with problems like reduced reliability and unpredictable latencies, making them harder to use for CPSs. With this intention, this thesis explores the use of LPWANs, specifically LoRa, to meet the communication and control requirements of WA-CPSs. The thesis focuses on using LoRa due to its high resilience to noise, several communication parameters to choose from and a freely modifiable communication stack and servers making it ideal for research and deployment. However, LoRaWAN suffers from low reliability due to its ALOHA channel access method. The thesis posits that "Distributed algorithms would increase the protocol's reliability allowing it to meet the requirements of WA-CPSs". Three different application scenarios are explored in this thesis that leverage unexplored aspects of LoRa to meet their requirements. The application scenarios are delay-tolerant vehicular networks, multi-stakeholder WA-CPS deployments and water distribution networks. The systems use novel algorithms to facilitate communication between the nodes and gateways to ensure a highly reliable system. The results outperform state-of-art techniques to prove that LoRa is currently under-utilised and can be used for CPS applications.Open Acces

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    PACKET ERROR RATE PREDICTIVE MODEL FOR SENSOR RADIOS ON FAST ROTATING STRUCTURES

    Get PDF
    Wireless sensing technologies have raised widespread interests in the applications for monitoring fast rotating or moving machinery structures in manufacturing environments. Over the past five years, a few wireless sensor systems have been implemented and proven to feasibly work under fast rotation conditions. However, few of these studies evaluated data transmission performance of the wireless communication systems. Although the manufacturing environments are known to be harsh for wireless communication, in many cases, an excellent data throughput is critical for such systems. Conventional statistical methods for studying wireless communication channels are not sufficient in this specific field. This dissertation presents systematic experiments to understand and characterize the behavior of a 2.4 GHz band wireless channel between a fast rotating transmitter and a stationary data receiver. The experiments prove, in manufacturing machines, multipath propagation induced by metallic objects causes high power attenuation of radio signals during transmitter motion, and the consequence, low received signal power, is recognized as the major cause of transmission errors. The dissertation proposes a deterministic packet error rate (PER) predictive model for rotating wireless measuring systems using IEEE 802.15.4 sensor radios. The model consists of three sub-models that predict power attenuation, bit error rate (BER), and PER in three stages for given specifications regarding environment, radio transmission, and rotation. The dissertation provides experimental validation of the sub-models and discusses their limitations and prediction errors. By either experiments or simulations, two data transmission protocols, automatic retransmission request (ARQ) method and online error avoidance algorithm, are proved efficient for a reliable wireless communication of such sensor radios. As the first effort to characterize and model such radio channels, the dissertation provides in-depth understandings of the channels\u27 fast varying behavior, achieves prediction guidance for the channels\u27 communication performance, and introduces prospective transmission protocols for performance enhancement

    Wireless Real-Time Communication in Tunnel-like Environments using Wireless Mesh Networks: The WICKPro Protocol

    Get PDF
    En los últimos años, las redes inalámbricas se están utilizando cada vez más en entornos industriales debido a sus ventajas respecto a redes cableadas: menor coste de instalación, soporte de movilidad, instalación en lugares donde los cables pueden ser problemáticos y mayor facilidad de reconfiguración. Estas redes inalámbricas normalmente deben proporcionar comunicación en tiempo real para satisfacer los requerimientos de las aplicaciones. Podemos encontrar ejemplos de comunicación en tiempo real con redes inalámbricas para entornos industriales en el campo de la automatización industrial y en el control de procesos, donde redes inalámbricas de radiofrecuencia han sido utilizadas para posibilitar comunicación en tiempo real con un despliegue sencillo. Asimismo, la industria también está interesada en comunicaciones en tiempo real en entornos subterráneos, puesto que existen diversas actividades que se llevan a cabo en escenarios tales como túneles y minas, incluyendo operaciones de minería, vigilancia, intervención y rescate. Las redes inalámbricas malladas (Wireless Mesh Networks, WMNs) representan una solución prometedora para conseguir comunicaci ón en tiempo real en entornos inalámbricos, dado que proporcionan una red troncal inalámbrica formada por encaminadores (routers) que es utilizada por terminales móviles. Sin embargo, las WMNs también presentan algunos retos: la naturaleza multisalto de estas redes causa interferencias entre flujos e interferencias de un flujo consigo mismo, además de que la propagación inalámbrica sufre shadowing y propagación multicamino. El estándar IEEE 802.11 ha sido ampliamente utilizado en redes WMNs debido a su bajo coste y la operación en bandas frecuenciales sin licencia. El problema es que su protocolo de acceso al medio (Medium Access Control, MAC) no es determinista y que sus comunicaciones sufren los problemas del terminal oculto y expuesto. Esta tesis doctoral se centra en el soporte de comunicaciones en tiempo real en entornos tipo túnel utilizando redes WMNs. Con este objetivo, desarrollamos un protocolo MAC y de nivel de red denominado WIreless Chain networK Protocol (WICKPro) que funciona sobre IEEE 802.11. Más concretamente, en este trabajo diseñamos dos versiones de este protocolo para proporcionar soporte de tráfico de tiempo real firme (Firm Real-Time, FRT) y de tiempo real no estricto (Soft Real-Time, SRT): FRT-WICKPro y SRT-WICKPro. Asimismo, proponemos un algoritmo de hand-off conocido como Double-Threshold Hand-off (DoTHa) para el manejo de la movilidad en SRT-WICKPro WICKPro utiliza un esquema de paso de testigo para solventar las interferencias entre flujos y de un flujo consigo mismo, así como los problemas del terminal oculto y expuesto, dado que este esquema no permite que dos nodos transmitan al mismo tiempo. Esta solución es razonable para redes pequeñas donde el re uso espacial es imposible o limitado. Para tratar la naturaleza no determinista de IEEE 802.11, combinamos el esquema de paso de testigo con una planificación cíclica global. Como es habitual en planificación cíclica, el hiperperiodo es dividido en un conjunto de ciclos secundarios. FRT-WICKPro inicia el paso de testigo de forma síncrona para satisfacer estrictamente dichos ciclos secundarios, mientras que SRT-WICKPro implementa un paso de testigo asíncrono y permite sobrepasar los ciclos secundarios, por lo que desacopla los ciclos secundarios reales de los te_oricos. Finalmente, DoTHa lidia con el shadowing y la propagación multicamino. Para abordar el shadowing, DoTHa permite llevar a cabo el proceso de hand-off en la región conectada y en la región de transición de un enlace, mientras que la propagación multicamino es ignorada para el proceso de hand-off porque la potencia recibida es promediada. Nuestras propuestas fueron validadas en experimentos de laboratorio y de campo, así como en simulación. Como un estudio de caso, llevamos a cabo la teleoperación de un robot móvil en dos entornos confinados: los pasillos de un edificio y el túnel del Somport. El túnel del Somport es un antiguo túnel ferroviario fuera de servicio que conecta España y Francia por los Pirineos Centrales. Aunque los robots autónomos son cada vez más importantes, la tecnología no está suficientemente madura para manejar entornos con alto dinamismo como sistemas de fabricación reconfigurables, o para realizar decisiones de vida o muerte, por ejemplo después de un desastre con contaminación radiactiva. Las aplicaciones que pueden beneficiarse de la teleoperación de robots móviles incluyen la monitorización en tiempo real y el uso de maquinaria robotizada, por ejemplo camiones dumper y máquinas tuneladoras, que podrían ser operadas remotamente para evitar poner en peligro vidas humanas.Industrial applications have been shifting towards wireless networks in recent years because they present several advantages compared with their wired counterparts: lower deployment cost, mobility support, installation in places where cables may be problematic, and easier reconfiguration. These industrial wireless networks usually must provide real-time communication to meet application requirements. Examples of wireless real-time communication for industrial applications can be found in factory automation and process control, where Radio Frequency wireless communication technologies have been employed to support flexible real-time communication with simple deployment. Likewise, industry is also interested in real-time communication in underground environments, since there are several activities that are carried out in scenarios such as tunnels and mines, including mining, surveillance, intervention, and rescue operations. Wireless Mesh Networks (WMNs) are promising enablers to achieve wireless real-time communication because they provide a wireless backbone comprised by dedicated routers that is utilized by mobile terminals. However, WMNs also present several challenges: wireless multi-hopping causes inter-flow and intra-flow interferences, and wireless propagation suffers shadowing and multi-path fading. The IEEE 802.11 standard has been widely used in WMNs due to its low cost and the operation in unlicensed frequency bands. The downside is that its Medium Access Control (MAC) protocol is non-deterministic, and that its communications suffer from the hidden and exposed terminal problems. This PhD thesis focuses on real-time communication in tunnel-like environments by using WMNs. Particularly, we develop a MAC and network protocol on top of the IEEE 802.11 standard to provide real-time capabilities, so-called WIreless Chain networK Protocol (WICKPro). Two WICKPro versions are designed to provide Firm Real-Time (FRT) or Soft Real-Time (SRT) traffic support: FRT-WICKPro and SRT-WICKPro. We also propose a hand-off algorithm dubbed Double-Threshold Hand-off (DoTHa) to manage mobility in SRT-WICKPro. WICKPro employs a token-passing scheme to solve the inter-flow and intra-flow interferences as well as the hidden and exposed terminal problems, since this scheme does not allow two nodes to transmit at the same time. This is a reasonable solution for small-scale networks where spatial reuse is impossible or limited. The non-deterministic nature of IEEE 802.11 is faced by combining the token-passing mechanism with a polling approach based on a global cyclic packet schedule. As usual in cyclic scheduling, the hyper-period is divided into minor cycles. FRT-WICKPro triggers the token synchronously and fulfills strictly minor cycles, whereas SRT-WICKPro carries out asynchronous token-passing and lets minor cycles be overrun, thereby decoupling the theoretic and the actual minor cycles. Finally, DoTHa deals with shadowing and multi-path fading. Shadowing is addressed by providing the opportunity of triggering hand-off in the connected and transitional regions of a link, while multi-path fading is neglected for hand-off purposes by smoothing the received signal power. We tested our proposals in laboratory and field experiments, as well as in simulation. As a case study, we carried out the tele-operation of a mobile robot within two confined environments: the corridors of a building and the Somport tunnel. The Somport tunnel is an old out-of-service railway tunnel that connects Spain and France through the Central Pyrenees. Although autonomous robots are becoming more and more important, technology is not mature enough to manage highly dynamic environments such as reconfigurable manufacturing systems, or to make life-and-death decisions, e.g., after a disaster with radioactivity contamination. Applications that can benefit from mobile robot tele-operation include real-time monitoring and the use of robotized machinery, for example, dumper trucks and tunneling machines, which could be remotely operated to avoid endangering human lives

    one6G white paper, 6G technology overview:Second Edition, November 2022

    Get PDF
    6G is supposed to address the demands for consumption of mobile networking services in 2030 and beyond. These are characterized by a variety of diverse, often conflicting requirements, from technical ones such as extremely high data rates, unprecedented scale of communicating devices, high coverage, low communicating latency, flexibility of extension, etc., to non-technical ones such as enabling sustainable growth of the society as a whole, e.g., through energy efficiency of deployed networks. On the one hand, 6G is expected to fulfil all these individual requirements, extending thus the limits set by the previous generations of mobile networks (e.g., ten times lower latencies, or hundred times higher data rates than in 5G). On the other hand, 6G should also enable use cases characterized by combinations of these requirements never seen before, e.g., both extremely high data rates and extremely low communication latency). In this white paper, we give an overview of the key enabling technologies that constitute the pillars for the evolution towards 6G. They include: terahertz frequencies (Section 1), 6G radio access (Section 2), next generation MIMO (Section 3), integrated sensing and communication (Section 4), distributed and federated artificial intelligence (Section 5), intelligent user plane (Section 6) and flexible programmable infrastructures (Section 7). For each enabling technology, we first give the background on how and why the technology is relevant to 6G, backed up by a number of relevant use cases. After that, we describe the technology in detail, outline the key problems and difficulties, and give a comprehensive overview of the state of the art in that technology. 6G is, however, not limited to these seven technologies. They merely present our current understanding of the technological environment in which 6G is being born. Future versions of this white paper may include other relevant technologies too, as well as discuss how these technologies can be glued together in a coherent system
    • …
    corecore