373 research outputs found

    Self-Triggered Formation Control of Nonholonomic Robots

    Get PDF
    In this paper, we report the design of an aperiodic remote formation controller applied to nonholonomic robots tracking nonlinear, trajectories using an external positioning sensor network. Our main objective is to reduce wireless communication with external sensors and robots while guaranteeing formation stability. Unlike most previous work in the field of aperiodic control, we design a self-triggered controller that only updates the control signal according to the variation of a Lyapunov function, without taking the measurement error into account. The controller is responsible for scheduling measurement requests to the sensor network and for computing and sending control signals to the robots. We design two triggering mechanisms: centralized, taking into account the formation state and decentralized, considering the individual state of each unit. We present a statistical analysis of simulation results, showing that our control solution significantly reduces the need for communication in comparison with periodic implementations, while preserving the desired tracking performance. To validate the proposal, we also perform experimental tests with robots remotely controlled by a mini PC through an IEEE 802.11g wireless network, in which robots pose is detected by a set of camera sensors connected to the same wireless network

    Hybrid Flocking Control Algorithm with Application to Coordination between Multiple Fixed-wing Aircraft

    Get PDF
    Flocking, as a collective behavior of a group, has been investigated in many areas, and in the recent decade, flocking algorithm design has gained a lot of attention due to its variety of potential applications. Although there are many applications exclusively related to fixed-wing aircraft, most of the theoretical works rarely consider these situations. The fixed-wing aircraft flocking is distinct from the general flocking problems by four practical concerns, which include the nonholonomic constraint, the limitation of speed, the collision avoidance and the efficient use of airspace. None of the existing works have addressed all these concerns. The major difficulty is to take into account the all four concerns simultaneously meanwhile having a relatively mild requirement on the initial states of aircraft. In this thesis, to solve the fixed-wing aircraft flocking problem, a supervisory decentralized control algorithm is proposed. The proposed control algorithm has a switching control structure, which basically includes three modes of control protocol and a state-dependent switching logic. Three modes of decentralized control protocol are designed based on the artificial potential field method, which helps to address the nonholonomic constraint, the limitation of speed and the collision avoidance for appropriate initial conditions. The switching logic is designed based on the invariance property induced by the control modes such that the desirable convergence properties of the flocking behavior and the efficient use of airspace are addressed. The proposed switching logic can avoid the fast mode switching, and the supervisor does not require to perform switchings frequently and respond to the aircraft immediately, which means the desired properties can still be guaranteed with the presence of the dwell time in the supervisor

    Lyapunov Self-triggered Controller for Nonlinear Trajectory Tracking of Unicycle-type Robot

    Get PDF
    This paper focuses on the design and implementation of an aperiodic control of nonholonomic robots tracking nonlinear trajectories. The main objective of our controller is to reduce the number of updates while preserving control performance guarantees. To solve the problem in a more efficient way, we design two aperiodic control solutions, one to reach a target point and a second to track a predefined nonlinear trajectory. Unlike most previous work, our triggering condition only updates the controller when the time derivative of the Lyapunov function becomes nonnegative, without taking into account the measurement error. Multiple simulated results with different initial conditions are included, showing how our control solution significantly reduces the need for communication in comparison with periodic and other aperiodic strategies while preserving a desired tracking performance. To validate the proposal experimental tests of each control technique with a P3-DX robot remotely controlled through an IEEE 802.11g wireless network are also carried out

    Self-Triggered Stochastic MPC for Linear Systems With Disturbances

    Get PDF
    In this letter, we present a self-triggering mechanism for stochastic model predictive control (SMPC) of discrete-time linear systems subject to probabilistic constraints, where the controller and the plant are connected by a shared communication network. The proposed triggering mechanism requires that only one control input is allowed to be transmitted through the network at each triggering instant which is then applied to the plant for several steps afterward. By doing so, communication is effectively reduced both in terms of frequency and total amount. We establish the theoretical result for recursive feasibility in the light of proper reformulation of constraints on the nominal system trajectories, and also provide stability analysis for the proposed self-triggered SMPC. A numerical example illustrates the efficiency of the proposed scheme in reducing the communication as well as ensuring meeting the probabilistic constraints

    Multiple Loop Self-Triggered Model Predictive Control for Network Scheduling and Control

    Full text link
    We present an algorithm for controlling and scheduling multiple linear time-invariant processes on a shared bandwidth limited communication network using adaptive sampling intervals. The controller is centralized and computes at every sampling instant not only the new control command for a process, but also decides the time interval to wait until taking the next sample. The approach relies on model predictive control ideas, where the cost function penalizes the state and control effort as well as the time interval until the next sample is taken. The latter is introduced in order to generate an adaptive sampling scheme for the overall system such that the sampling time increases as the norm of the system state goes to zero. The paper presents a method for synthesizing such a predictive controller and gives explicit sufficient conditions for when it is stabilizing. Further explicit conditions are given which guarantee conflict free transmissions on the network. It is shown that the optimization problem may be solved off-line and that the controller can be implemented as a lookup table of state feedback gains. Simulation studies which compare the proposed algorithm to periodic sampling illustrate potential performance gains.Comment: Accepted for publication in IEEE Transactions on Control Systems Technolog

    Robust model predictive kinematic tracking control with terminal region for wheeled robotic systems

    Get PDF
    This paper addresses the nonlinear model predictive control (MPC) for wheeled mobile robots (WMRs) under external disturbance. The decoupling technique is utilized based on the non-holonomic constraint description for separating the WMR model. This method is able to achieve the under-actuated kinematic sub-system without disturbance and fully-actuated dynamic sub-system in presence of disturbance. Thanks to the decoupling technique, the disturbance is lumped into dynamic sub-system. The novelty lies in that the MPC-based tracking control with fixed initial point guarantees the stability based on a new establishment of terminal region and equivalent terminal controller. The feasibility problem is demonstrated to lead the tracking problem using theoretical analysis. Moreover, the control structure is inserted more the robust nonlinear dynamic controller. The effectiveness and advantages of the proposed control scheme are verified by numerical simulations using Yamip tool

    Receding Horizon Temporal Logic Control for Finite Deterministic Systems

    Full text link
    This paper considers receding horizon control of finite deterministic systems, which must satisfy a high level, rich specification expressed as a linear temporal logic formula. Under the assumption that time-varying rewards are associated with states of the system and they can be observed in real-time, the control objective is to maximize the collected reward while satisfying the high level task specification. In order to properly react to the changing rewards, a controller synthesis framework inspired by model predictive control is proposed, where the rewards are locally optimized at each time-step over a finite horizon, and the immediate optimal control is applied. By enforcing appropriate constraints, the infinite trajectory produced by the controller is guaranteed to satisfy the desired temporal logic formula. Simulation results demonstrate the effectiveness of the approach.Comment: Technical report accompanying a paper to be presented at ACC 201

    NAVIGATION STRATEGY FOR MOBILE ROBOT BASED ON COMPUTER VISION AND YOLOV5 NETWORK IN THE UNKNOWN ENVIRONMENT

    Get PDF
    Intelligent mobile robots must possess the ability to navigate in complex environments. The field of mobile robot navigation is continuously evolving, with various technologies being developed. Deep learning has gained attention from researchers, and numerous navigation models utilizing deep learning have been proposed. In this study, the YOLOv5 model is utilized to identify objects to aid the mobile robot in determining movement conditions. However, the limitation of deep learning models being trained on insufficient data, leading to inaccurate recognition in unforeseen scenarios, is addressed by introducing an innovative computer vision technology that detects lanes in real-time. Combining the deep learning model with computer vision technology, the robot can identify different types of objects, allowing it to estimate distance and adjust speed accordingly. Additionally, the paper investigates the recognition reliability in varying light intensities. The findings of this study offer promising directions for future breakthroughs in mobile robot navigatio
    corecore